DOI:https://doi.org/10.3232/SJSS.2016.V6.N2.04

The relationships among thermal resistivity, water content and a stony sandy soil

Carles M. Rubio

Abstract

Developing soil macro-porosity could be considered to be a direct effect of physical, chemical and eco-pedological processes where the soil matrix has contact with coarse elements. Hence, macro-porosity acquires a special importance affecting the liquid phase as well as the gas phase, and therefore the soil thermal properties as well. The aim of this research is to evaluate the effect of the coarse elements on the total thermal resistivity (Rho) for a sandy soil. The experiment was carried out with several gravel masses (kggravels·kgsoil-1) mixed with soil, and repacked in a soil column device. The method used for measuring the thermal resistivity was the heat pulse, based on ASTM D5334-08. The water content (θ) was determined using capacitor probes (FDR probes). The experimental device was maintained inside a thermal chamber for controlling a minimal thermal drift. The Rho(θ) relationship presented higher variability when 35% of coarse elements were added and the water content was close to saturation.


Views: 991
Downloads PDF (Español (España)): 2478

 

References


Abu-Hamdeh NH. 2003. Thermal properties of soils as affected by density and water content. Biosystems Engineering 86(1):97-102.

Al Nakshabandi G, Kohnke H. 1965. Thermal conductivity and diffusivity of soils as related to moisture tension and other physical properties. Agricultural Meteorology 2:271-279.

ASTM D5334-08. Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure.

Beven K, Germann P. 1982. Macropores and water flow in soils. Water Resour Res. 18(5):1311-1325.

Bouma J. 1983. Use of soil survey data to select measurement techniques for hydraulic conductivity. Agric Water Manage. 6:177-190.

Campbell GS, Jungbauer Jr. JD, Bidlake WR, Hungerford RD. 1994. Predicting the effect of temperature on soil thermal conductivity. Soil Sci. 158:307-313.

Campbell GS, Norman JM. 1998. An Introduction to Environmental Biophysics. 2nd Ed. New York: Springer Verlag.

Carslaw HS, Jaeger JC. 1959. Conduction of heat in solids. Oxford: Oxford University Press.

DeVries DA. 1963. Thermal properties of soils. In: van Wijk WR, editor. Physics of plant environment. Amsterdam: North-Holland Publishing Co. p. 210-235.

Dexter A. 1986. Model experiments on the behaviour of roots at the interface between a tilled seed-bed and a compacted sub-soil. Plant Soil 95:135-147.

Duchaufour Ph. 1988. Pedologie. Barcelona: Ed. Masson. 224 p.

Elbersen G. 1982. Mechanical replacement processes in mobile soft calcic horizons: their role in soil and landscape genesis in an area near Merida, Spain. Agricultural Research Report 919. Wageningen: ITC. 220 p.

Espeby B. 1989. Water flow in a forested till slope: Field studies and physically based modelling. Report 1052, Tritakut Series. Department of Land and water Resources. Royal Institute of Technology. Stockholm. p. 1-33.

FAO. 2006. Guidelines for soil description. 4th edition. Rome: FAO. 109 p.

Flint A, Childs A. 1984. Physical properties of rock fragments and their effect on available water in skeletal soils. In: Kral D, editor. Erosion and Productivity of Soils Containing Rock Fragments, 13. Madison, WI, USA: Soil Science Society America. p. 91-103.

García-Rodríguez A, editor. 1985. Estudio edáfico de la provincia de Valladolid: mapa de suelos, escala 1:100.000 de la zona situada al sur del rio Duero, 1. Salamanca: Consejo Superior de lnvestigaciones Científicas. 206 p.

Gee GW, Bauder JW. 1986. Particle size analysis. In: Klute A, editor. Methods of Soil Analysis. Part I. Mongraph 15. Madison, WI, USA: American Society of Agronomy. p. 383-411.

IEEE 442-03. Guide for Soil Thermal Resistivity Measurements.

Ingelmo F, Cuadrado S, Ibafiez A, Hernández J. 1994. Hydric properties of some Spanish soils in relation to their rock fragment content: implications for runoff and vegetation. Catena 23:73-85.

ISO 10390:1994. Soil quality. Determination of pH.

Jackson RD, Taylor SA. 1965. Heat Transfer. In: Black CA, editor. Methods of soil analysis. Agronomy Series 9. Madison, WI, USA: American Society of Agronomy.

Johansen O. 1975. Thermal conductivity of soils. Ph.D. Thesis. Trondheim, Norway.

Kluitenberg GJ, Ham JM, Bristow KL. 1993. Error analysis of the heat pulse method for measuring soil volumetric heat capacity. Soil Sci Soc Am. J. 57:1444-1451.

Koorevaar P, Menelik G, Dirksen C. 1983. Elements of soil physics. Developments in soil science 13. New York: Elsevier. 230 p.

Ministerio de Agricultura, Pesca y Alimentación. 1986. Métodos Oficiales de Análisis. Tomo III. Madrid: Ed. Secretaría General Técnica M.A.P.A. 532 p.

Naidu AD, Singh DN. 2004. A generalized procedure for determining thermal resistivity of soils. International Journal of Thermal Sciences 43:43-51.

Ochsner TE, Horton R, Ren T. 2001. A new perspective on soil thermal properties. Soil Sci Soc. Am J. 65:1641-1647.

Reynolds SG. 1970. The gravimetric method of soil moisture determination. Part I. A study of equipment and methodological problems. Journal of Hydrology 11:258-273.

Rubio CM. 2013. A laboratory procedure to determine the thermal properties of silt loam soils based on ASTM D 5334. Applied Ecology and Environmental Sciences 1(4): 45-48.

Rubio CM. 2014. Applicability of column devices to measure thermal properties in porous media. Transactions on Geosciences 1(2):50-59.

Rubio CM, Josa R, Cobos DR, Ferrer F. 2009. Determinación de la resistividad térmica en función de la humedad precedente para un suelo franco limoso con diferentes porcentajes de gravas. Estudios de la Zona No Saturada del Suelo Vol. IX:206-211.

Singh DN, Devid K. 2000. Generalized relationships for estimating soil thermal resistivity. Experimental Thermal Fluid Sci. 22:133-143.

Skinner SIM, Halstead RL, Brydon JE. 1959. Quantitative manometric determination of calcite and dolomite in soils and limestones. Can J Soil Sci. 39:197-204 p.

USDA. 1996. Soil survey laboratory methods manual. Soil Survey Investigations Report Nº 42. Washington DC, USA: NRCS. 693 p.

Vanpelt DJ. 1976. Thermal conductivity measurements of crushed stone and gravel aggregate. CRREL Technical Note, unpublished.

Villani M, Wright R. 1990. Environmental influences on soil macroarthropod behaviour in agricultural systems. Annu Rev Enthomol. 35:249-269.

Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. J Soil Sci. 37:29-38.

White R. 1985. The influence of macropores on the transport of disolved and suspended matter through soil. Adv Soil Sci. 3:89-120.





With the patronage of
Universia
Avda. de Cantabria, s/n - 28660, Boadilla del Monte
Madrid, España