Sensitivity of soil biological indicators in an Argiudoll from the Argentinean Pampas


The maintenance of soil quality and crop productivity is an important goal for modern agriculture. Soil tillage systems that improve the soil organic carbon and also favor the survival and activity of soil microorganisms could contribute to the sustainability of agricultural systems. The aim of the work was to assess the changes produced by different management practices (tillage systems and cover crop) on soil biological parameters in order to evaluate their capacity as sensitive soil quality indicators. The trial was carried out at the Agriculture Experimental Station INTA Marcos Juárez (Province of Cordoba-Argentina), with different soil management techniques. Soil organic carbon (OC), microbial biomass carbon (MBC), soil enzyme activities (acid phosphatase, dehydrogenase and urease) and metabolic quotient (qCO2) were determined on soil samples (0-7.5 cm sampling depth) at six sampling times. The management techniques were: combined tillage (CL), no-tillage (NT) and no-tillage with cover crop (NTCC). An old pasture that has not been tilled since 1993  was also sampled as a reference (R). Soil organic carbon, MBC and soil enzyme activities were higher in the undisturbed soil (R) than in the cropped plots (p < 0.05), while the qCO2 was significantly lower. The OC decrease was 39.2%, 35.1% and 29.1% for CL, NT and NTCC, respectively. The CL treatment showed lower MCB values (between 50% and 67%) than those found in NTCC. Metabolic efficiency was significantly higher in NTCC than in CL (qCO2 was 32% lower). A lower enzymatic activity (acid phosphatase, urease and dehydrogenase) was found in CL with respect to NTCC (p < 0.05). Soil enzymes were positively correlated with MBC, and OC with MBC. Multivariate data analysis allowed group treatments and a summary variable was obtained that could be interpreted as a simple index of soil quality. The OC was not a sensitive indicator to differentiate management systems. However, it was sensitive enough to detect changes between R with respect the other treatments. Instead, biological parameters allowed for differentiation of effect of different management, identifying the system NTCC as the greatest contributor to the sustainability and biological soil conservation. Microbial biomass carbon is suggested as a sensitive indicator since it is related to various soil functions. Also, the metabolic quotient (qCO2) has proved to be a suitable indicator because it determines the metabolic efficiency of the microbial population through the relation between basal respiration per unit of MBC.
PDF (Español (España))


Acosta-Martínez V, Mikha MM, Vigil MF. 2007. Microbial communities and enzyme activities in soils under alternative crop rotations compared to wheat-fallow for the Central Great Plains. Appl. Soil Ecol; 37:41-52.

Anderson TH, Domsch KH. 1993. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem; 25: 393-395.

Aon MA, Cabello MN, Sarena DE, Colaneri AC, Franco MG, Burgos JL, Cortassa S. 2001. Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil. Appl Soil Ecol; 18: 239–254.

AAPRESID: Asociación Argentina de Productores en Siembra Directa. Relevamiento de Superficie Agrícola Bajo Siembra Directa 2012. Available online:

Azqueta Oyarzun D. 2007. Introducción a la Economía Ambiental. 2da Edición. Mc Graw Hill – Interamericana de España S.A.U.

Balota EL, Colozzi A, Andrade DS, Dick RP. 2004. Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Till Res; 77: 137-145.

Cosentino D, Pecorari C. 2002. Limos de baja densidad: impacto sobre el comportamiento físico de los suelos de la región pampeana. Cien Suelo; 20: 9-16.

Costa JL, Aparicio VC Cerda A. 2014. Soil physical quality changes under different management systems after 10 years in Argentinian Humid Pampa. Solid Earth Discuss; 6: 2615–2644.

Di Rienzo JA; Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. 2011. Infostat, versión 2011. Grupo Infostat. FCA, UNC, Córdoba, Argentina.

Doran JW, Parkin TB. 1994. Defining Soil Quality for a Sustainable Environment. Soil Sci Soc Am, Madison, USA.

Doran JW, Zeiss MR. 2000. Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol; 15: 3-11.

Ebhin Masto E, Chhonkar PK, Singh D, Patra AK. 2006. Changes in soil biological and biochemical characteristics in a longterm field trial on a sub-tropical inceptisol, Soil Biol Biochem; 38: 1577–1582.

Eiza MJ, Fioriti N, Studdert GA, Echeverría HE. 2005. Fracciones de carbono orgánico en la capa arable: efecto de los sistemas de cultivo y de la fertilización nitrogenada. Cien Suelo; 23: 59-68.

Estación Meteorológica, INTA Marcos Juárez, 2010. Disponible en: Verificado 26/03/2010

Ferreras LA, Magra G, Besson P, Kovalevski E, García F. 2007. Indicadores de calidad física en suelos de la Región Pampeana Norte de argentina bajo siembra directa. Cien Suelo; 25: 159-172.

Ferreras LA, Toresani S, Bonel B, Fernandez E, Bacigaluppo S, Faggioli V, Beltran C. 2009. Parámetros químicos y biológicos como indicadores de calidad del suelo en diferentes manejos. Cien Suelo; 27: 103-114.

Franchini JC, Crispino CC, Souza RA, Torres E, Hungria M, 2007. Microbiological parameters as indicators of soil quality under various tillage and crop rotation systems in southern Brazil. Soil Till Res; 92: 18–29.

Frioni L. 1999. Procesos Microbianos. Editorial Fundación Universidad Nacional de Río IV.

Galantini J, Suñer L. 2008. Las fracciones orgánicas del suelo: análisis en los suelos de Argentina. Agrisc; 1: 41-55.

Haynes RJ. 1999. Size and activity of the soil microbial biomass under grass and arable management. Biol Fertil Soils; 30: 210–216.

Irizar A, Andriulo A, Mary B. 2013. Long-term Impact of No Tillage in Two Intensified Crop Rotations on Different Soil Organic Matter Fractions in Argentine Rolling Pampa. The Op Agric J; 7: 22- 31.

Jenkinson D, Powlson D. 1976. The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol Biochem; 8: 209-213.

Lal R. 2008. Soils and sustainable agriculture. A review. Agron Sustain Dev; 28: 57-64.

Madejón E, Moreno F, Murillo JM, Pelegrín F. 2007. Soil biochemical response to long-term conservation tillage under semi-arid Mediterranean conditions. Soil Till Res; 94: 346–352.

Melero S, López-Garrido R, Murillo JM, Moreno F. 2009. Conservation tillage: Short and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil Till Res; 104: 292–298.

Milesi Delaye LA, Irizar AB, Andriulo AE, Mary B. 2013. Effect of Continuous Agriculture of Grassland Soils of the Argentine Rolling Pampa on Soil Organic Carbon and Nitrogen. Appl Environ Soil Sci; 2013: 1-17.

Nelson D, Sommers L. 1982. Total carbon, organic carbon and organic matter. Methods of soil analysis, Part 2, Chemical and Microbiological Properties. Am. Soc. Agron. Madison, WI, USA.

Restovich S, Andriulo A, Amendola C. 2011. Introducción de cultivos de cobertura en la rotación soja-maíz: efecto sobre algunas propiedades del suelo. Cien Suelo; 29: 61-73.

Ricotta C. 2005. Through the jungle of biological diversity. Acta Biotheor; 53:29-38.

Ruzek L, Vorisek K, Strnadova S, Novakova M, Barabasz W. 2004. Microbial characteristics, carbon and nitrogen content in cambisols and luvisols. Plant Soil Environ; 50: 196–204.

Sainz Rozas H, Echeverria H, Angelini H. 2011. Niveles de Materia Orgánica y pH en suelos agrícolas de la Región Pampeana y Extrapampeana. Cien Suelo; 29: 29-37.

Six J, Feller C, Denef K, Ogle SM, Sa´ JCM, Albrecht A. 2001. Soil organic matter, biota and aggregation in temperate and tropical soils effects of no-tillage. Agronomie; 22: 755–775.

Soil Survey Staff. 2006. Keys to Soil taxonomy. 10th Edition. USDA. NRCS, Washington DC.

Tabatabai M. 1982. Soil Enzimes. Methods of soil analysis, Chemical and Microbiological Properties, Part 2. Am. Soc. Agron. Madison, WI, USA.

Trasar-Cepeda C, Leiros MC, Seoane S, Gil-Sotres F. 2008. Biochemical properties of soils under crop rotation. Appl Soil Ecol; 39: 133-143.

Vezzani FM, Mielniczuk J. 2009. Uma visão sobre qualidade do solo. Rev Bras Cien Solo; 33:743-755.

Zibilske LM, Makus DJ. 2009. Black oat cover crop management effects on soil temperature and biological properties on a Mollisol in Texas, USA. Geoderma; 149: 379–38.