DOI:https://doi.org/10.3232/SJSS.2016.V6.N1.06

First results of Technosols constructed from municipal waste in Vitoria-Gasteiz (Spain)

Álvaro Herrán Fernández, Rafael G. Lacalle, María Jesús Iturritxa Vélez del Burgo, Mikel Martínez Azkuenaga, Juan Vilela Lozano

Abstract

Construction of Technosols offers interesting alternatives to two current problems in the city of Vitoria-Gasteiz (Spain): waste recycling and degraded plot recovery. To evaluate the viability of their use, 6 types of Technosols were created by mixing four different byproducts from municipal waste treatment plants. The less than 40 mm size fraction material from the municipal construction and demolition waste treatment plant was used as the main ingredient, bio-stabilized material from the solid urban waste treatment plant mixed with triturated pruning was used as organic matter input, recycled bentonites and topsoil from the public plots of Vitoria-Gasteiz (Spain) completed the mixture. Mixes were prepared in triplicate and installed in 48 m2 cells along with another 4 control cells containing only one of the ingredients at the municipal landfill of Gardelegui. A monitoring program for different parameters on soil, eluates and natural leachates was established to test the Technosols’ capacity to sustain vegetation without negative impacts on the environment. The final objective is to test their ability to restore unused municipal plots. Results from the first year show that Technosols are a suitable option for degraded sites restoration and green infrastructure support. All controlled parameters on soil are within the limits set by autonomic legislation for land use as public park. The eluate analysis concludes for all studied parameters that all mixes would be classified by legislation as inert waste, except for the sulphate concentration (which exceeds the inert waste limit of 1 000 ppm), that currently would label the soil as non-hazardous. In the natural leachate analysis strongly basic pH values were present above 9.5, the limit allowed in Royal Decreet 849/1986, but acidified throughout the year moving towards neutrality, with final values between 7.31 and 7.51. Leachate from CDW30, TS15 and RB30 Technosols showed not allowed values with respect to sulfates and Fe during the last sampling, surpassing the limits of 2 mg/l and 2000 mg/l respectively. All studied Technosols presented a low ecological potential risk (RI < 150) for heavy metals in soil and eluates.
Views: 874
Downloads PDF: 673

 

References


Amuno SA. 2013. Potential ecological risk of heavy metal distribution in cementery soils. Water, Air and Soil Pollution 224(2):1-12.

Arbestain MC, Ibargoitia ML, Madinabeitia Z, Gil MV, Virgel S, Morán A, Macías F. 2009. Laboratory appraisal of organic carbon changes in mixtures made with different inorganic wastes. Waste Management 29(12):2931-2938.

Aronsson P, Dimitriou I. 2005. Sauces para energía y fitorremediación en Suecia. Unasylva 221(56):47-50.

Asensio V, Vega FA, Andrade ML, Covelo EF. 2013. Technosols made of wastes to improve physico-chemical characteristics of a copper mine soil. Pedosphere 23(1):1-9.

Asrari E. 2014. Heavy metal contamination of water and soil. Oakvill (Canada): Apple Academic Press.

BOE. 1986. Reglamento Público Hidráulico. Real Decreto 849/1986 de 11 de abril. Boletín Oficial del Estado, nº103, 30 de abril de 1986.

BOPV. 2015. Prevención y corrección de la contaminación del suelo. Ley 4/2015 de 25 de junio. Boletín Oficial del País Vasco, nº32, 24 de julio de 2015.

BOPV. 2009. Regulación de la eliminación de residuos mediante depósito en vertedero y la ejecución de los rellenos. Decreto 49/2009 de 24 de Febrero. Boletín Oficial del País Vasco, nº 54, 18 de marzo de 2009.

Briki M, Ji H, Li C, Ding H, Gao Y. 2015. Characterization, distribution, and risk assessment of heavy metals in agricultural soil and products around mining and smelting areas of Hezhang, China. Environmental monitoring and assessment187(12):1-21.

Clemente R, Hartley W, Riby P, Dickinson NM, Lepp NW. 2010. Trace element mobility in a contaminated soil two years after field-amendment with a greenwaste compost mulch. Environ Pollut. 158:1644-1651.

DOG. 2008. Instrucción técnica de residuos referente a la fabricación de suelos (tecnosoles) derivados de residuos. ITR/01/08 de 8 de enero. Diario Oficial de Galicia, nº18, 25 de enero de 2008.

EPA 410.4. 1993. Environmental monitoring systems laboratory office of research and development. Cincinnati, Ohio: U.S. Environmental Protection Agency.

EUSKALMET: Agencia vasca de meteorología. 2013. Datos de estaciones, octubre 2013. Avaible from: http://www.euskalmet.euskadi.eus/s07-5853x/es/meteorologia/climatologia.apl?e=5.

Hakanson L. 1980. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research 14:975-1001.

Huot H, Séré G, Charbonnier P, Simonnot MO, Morel JL. 2015. Lysimeter monitoring as assessment of the potential for revegetation to manage former iron industry settling ponds. The Science of The Total Environment 526:29-40.

Ibarrola CV. 2015. Lago Ypacari: aplicación de tecnosoles atieutrofizantes y reducción de cianobacterias. Revista sobre Estudios e Investigaciones del Saber Académico 8:71-74.

IHOBE. 2013. Efecto acondicionador de bentonitas recicladas sobre la fracción de lodos EDAR: Proyecto de rehabilitación de áreas naturales alteradas. IHOBE, Sociedad Pública de Gestión Ambiental.

ISO 11885. 1996. Water quality – Determination of 33 elements by inductively coupled plasma atomic emission spectroscopy.

ISO 15586. 2003. Water quality – Determination of trace elements using atomic absorption spectrometry with graphite furnace.

IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO.

Lehmann A. 2006. Technosols and other proposals on urban soils for the WRB (World Reference Base for Soil Resources). International agrophysics 20(2):129-134.

Lehmann A, Stahr K. 2007. Nature and significance of anthropogenic urban soils. J Soils Sediments 7(4):247-260.

Li Y. 2004. Effect of pH and organic matter on the bioavailability Cd and Zn in soil. Journal of Yunnan Agricultural University 20(4):539-543.

Lorenz K, Lal R. 2009. Biogeochemical C and N cycles in urban soils. Environment International 35(1):1-8.

Macías Vázquez F. 2004. Recuperación de suelos degradados, reutilización de residuos y secuestro de carbono. Una alternativa integral de mejora de la calidad ambiental. Recursos Rurais 1:49-56.

Maanan M, Saddik M, Maanan M, Chaibi M, Assobhei O, Zourarah B. 2015. Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecological Indicators 48:616-626.

Oldeman L, Hakkeling R, Sombroek W. 1991. Global assessment of soil degradation, world map of the status of human-induced soil degradation. [Modified 1991 Oct]. Wageningen (Netherlands): ISRIC.

Pandey B, Agrawal M, Singh S. 2016. Ecological risk assessment of soil contamination by trace elements around coal mining area. Journal of Soils and Sediments 16(1):159-168.

Quingjie G, Jun D, Yunchuan X, Qingfei W, Liqiang Y. 2008. Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences 19:230-241.

Ranger J, Turpault MP. 1999. Input–output nutrient budgets as a diagnostic tool for sustainable forest management. Forest Ecology and Management 122(1):139-154.

Seré G, Schwartz C, Ouvrard S, Renat JC, Watteau F, Villemin G, Morel JL. 2010. Early pedogenic evolution of constructed Technosols. Journal of Soils and Sediments 10(7):1246-1254.

Smith SR, 2009. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International 35(1):142-156.

Sylvain B, Mikael MH, Florie M, Emmanuel J, Marilyne S, Sylvain B, Domenico M. 2016. Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine Technosols. Catena 136:44-52.

UNE-EN ISO 10304-1. 2009. Calidad del agua. Determinación de aniones disueltos por cromatografía de iones en fase líquida. Parte 1. Determinación de bromuro, cloruro, fluoruro, nitrato, nitrito, fosfato y sulfato.

UNE-EN ISO 10523. 2012. Calidad del agua. Determinación del pH.

UNE-EN 12457-4. 2003. Caracterización de residuos. Lixiviación. Ensayo de conformidad para la lixiviación de residuos granulares y lodos. Parte 4: Ensayo por lotes de una etapa con una relación líquido-sólido de 10 l/kg para materiales con un tamaño de partícula inferior a 10 mm (con o sin reducción de tamaño).

UNE-EN 14039. 2005. Caracterización de residuos. Determinación del contenido de hidrocarburos en el rango de C10 a C40 por cromatografía de gases.

UNE 77308. 2001. Calidad de suelo. Determinación de conductividad eléctrica específica.

Wassemiller MA, Hoddinott KB. 1997. Testing Soil Mixed with Waste or Recycled Materials. Rosewood: STP 1275.

Wong JWC, Su DC. 1997. The growth of Agropyron elongatum in an artificial soil mix from coal fly ash and sewage sludge. Bioresource Technology 59(1):57-62.

Yao FX, Macías F, Santesteban A, Virgel S, Blanco F, Jiang X, Arbestain MC. 2009a. Influence of the acid buffering capacity of different types of Technosols on the chemistry of their leachates. Chemosphere 74(2):250-258.

Yao FX, Macías F, Virgel S, Blanco F, Jiang X, Arbestain MC. 2009b. Chemical changes in heavy metals in the leachates from Technosols. Chemosphere 77(1):29-35.





With the patronage of
Universia
Avda. de Cantabria, s/n - 28660, Boadilla del Monte
Madrid, España