DOI:https://doi.org/10.3232/SJSS.2016.V6.N1.03

Developing the prototype AndaLAND for agriculture soil and water assessment in climate change scenarios

Marta Fernández-Boyano, David Tabernero-Pérez, Sergio Alonso-Herrero, José Miguel Pérez-Álvarez, Francisco José Blanco-Velázquez, María Anaya-Romero, José Enrique Fernández-Luque

Abstract

There is a critical need to incorporate concerns on soil and water use and protection into land use planning policies and practices, not exclusively in protected areas, especially taking into account the widespread power transfer to local authorities regarding land-use decision making. Accordingly, it is extremely useful what Decision Support Systems (DSS) do on land use. AndaLAND is a prototype DSS which has been developed as a web-based application. It helps to define the vulnerability and the efficiency of the use and protection of soils in the selected target region: Andalusia (Southern Spain). AndaLAND integrates a complete catalogue of information on climate, soil and soil management, to make land vulnerability evaluation. By using Web Map Services (WMS), AndaLAND is fed with available databases from public mapping services (the Geographic Information System for the Common Agricultural Policy-SIGPAC) and other external sources (Microcomputed-based Land Evaluation Information System, MicroLEIS). Climate change scenarios are considered jointly with other relevant global change elements, such as land use change. Soil evaluation is based on decision rules that follow a decision tree. This method was established from Drools (a powerful hybrid reasoning system), using agrological rules for determining soil capacity in plots. The tool is capable of evaluating individually more than 6 million plots currently existing in the Andalusian region. AndaLAND’s final output is a report on the particular vulnerability of a user-specified plot. The report includes information on the plot’s geographical location, its environmental status regarding to (current and potential) impacts, degradation and/or pollution in the water-soil-crop system and eventual affections due to climate change-induced events. The report also provides practical recommendations for sustainable use and management of plots (in particular, for irrigated crops, these recommendations are linked to available irrigation technologies and water consumption).
Views: 665
Downloads PDF: 507

 

References


Anaya-Romero M. 2013. Soil data from Spain (Andalusia). In: Weynants et al., editors. European Hydropedological Data Inventory (EU-HYDI). 08/2013. Publications Office of the European Union. p. 57-62. DOI: 10.2788/5936. ISBN: 978-92-79-32355-3.

Bermejo D, Cáceres F, Moreira JM, Montes JE, Sánchez S, Laguna D, Caballo A, Anaya-Romero M, Asensio B. 2011. Medio siglo de cambios en la evolución de usos del suelo en Andalucía 1956-2007. Consejería de Medio Ambiente de la Junta de Andalucía.

Buol SW, Sánchez PA, Cate RB, Granger MA. 1975. Soil fertility capability classification: a technical soil classification system for fertility management. In: Bornemisza E, Alvarado A, editors. Soil Management in Tropical America. Raleigh, NC: N. C. State Univ. p. 126-145.

Corominas Masip J. 2014. Desarrollo Rural y DMA (Directiva Marco del Agua): ¿Cómo incidirán en los regadíos? In: Jornada El Feader y su contribución a los objetivos ambientales de la UE, WWF; 2014 Oct 14; Madrid, Spain.

De la Rosa D. 2013. Una agricultura a la medida de cada suelo: desde el conocimiento científico y la experiencia práctica a los sistemas de ayuda a la decisión. Acto de recepción como Académico Numerario; 2013 May 13; Real Academia Sevillana de Ciencias, Sevilla, Spain.

De la Rosa D, Anaya-Romero M. 2004. MicroLEIS DSS: FOR Planning Agro-Ecological Soil Use and Management Systems. Sevilla, Spain: Institute of Natural Resources and Agrobiology, CSIC.

De la Rosa D, Mayol F, Díaz-Pereira E, Fernández M, De la Rosa J. 2003. A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection with special reference to the Mediterranean region. Environmental Modelling and Software 19:929-942.

De la Rosa D, Mayol F, Moreno JA, Rosales A. 1986. CDBm, monthly Climate Database. MicroLEIS 4.1. Exploring the Agro-ecological Limits of Sustainability. Sevilla, Spain: IRNAS Press.

Doran JW, Parkin TB. 1994. Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA, editors. Defining Soil Quality for a Sustainable Environmental. SSSA Special Publication, Number 35. Madison, Wisconsin, USA: Soil Science Society of America. p. 3-21.

FAO. 1976. A Framework for Land Evaluation. FAO Soils Bulletin 52. Rome: FAO. 79 p.

Fernández JE. 2014a. Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. Environmental and Experimental Botany 103:158-179.

Fernández JE. 2014b. Plant-based sensing to monitor water stress: Applicability to commercial orchards. Agricultural Water Management 142:99-109.

Fernández J, Checa M, Esteban B, Sánchez J, Curt MD, Mosquera F, Romero L, Aguado PL. 2011. Descripción de las características agrarias y geográficas de las provicias de España. Tomo 1: Comunidades Autónomas (Sinopsis). Grupo de Agroenergética E.T.S.I. Agrónoma, Universidad Politécnica de Madrid. Madrid: Ministerio de Medio Ambiente y Medio Rural y Marino (MARM). p. 7-38.

Gallardo JF, editor. 2016. The Soils of Spain. World Soils Book Series. Printforce, The Netherlands: Springer International Publishing Switzerland 2016. 197 p.

Gehrke J, Loh W-Y, Ramakrishnan R. 1999. Classification and regression: money can grow on trees. Tutorial notes, KDD’99 International Conference on Knowledge Discovery and Data Mining; 1999 Aug 15-18; San Diego, California, USA. p. 1-73.

ICA. 1999. Modelo Digital de Elevaciones. 100 m. CD-ROM. Instituto de Cartografía de 613 Andalucía. Sevilla: Consejería de Obras Públicas y Transportes de la Junta de Andalucía.

IPCC. 2007. Climate change 2007: The Physical Science Basis. Cambridge/New York: Cambridge University Press.

IUSS Working Group WRB. 2006. World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103. Rome: FAO.

Jiménez-Ballesta R, Íñigo V, Andrades MS, Alonso-Martirena JI, Marín A. 2012. Soil property variability in a humid natural Mediterranean environment: La Rioja, Spain. Spanish Journal of Soil Science V2, N1:38-54.

Junta de Andalucía. 1984. Catálogo de suelos de Andalucía. Sevilla: Agencia de Medio Ambiente de la Junta de Andalucía.

Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE. 1997. Soil quality: a concept, definition and framework for evaluation. Soil Science Society of America J. 61:4-10.

Klingebiel AA, Montgomery PH. 1961. Land capability classification. USDA Agricultural Handbook 210. Washington, DC: US Government Printing Office.

Pla I. 2002a. Assessment of Environment impacts derived of soil and water conservation practices. In: Sustainable Utilization of Global Soil and Water Resources. Volume III. Beijing (China): Tsinghua University Press. p. 282-290.

Pla I. 2002b. Hydrological approach to soil and water conservation. In: Rubio JL, Morgan RPC, Asins S, Andreu V, editors. Man and Soil at the Third Millenium. Volume I. Logroño (España): Geoforma Ed. p. 65-67.

Pla I. 2014. Advances in soil conservation research: challenges for the future. Spanish Journal of Soil Science V4, N3:265-282.

Quinlan JR 1986. Learning decision tree classifiers. ACM Computing Surveys 28:71-72.





With the patronage of
Universia
Avda. de Cantabria, s/n - 28660, Boadilla del Monte
Madrid, España