DOI:https://doi.org/10.3232/SJSS.2016.V6.N2.06

Available phosphorus in the central area of the Argentinean Pampas. 2: Kinetics of adsorption and desorption of phosphorus under different soil and management environments

Martín María Silva Rossi, Adriana Ana del Carmen Rollán, Omar Antonio Bachmeier

Abstract

The concentration of phosphate ions in solution is critical in defining the ability of a soil to adequately meet crop demand. That concentration is regulated by adsorption/desorption and precipitation/dissolution processes, particularly its kinetics of reaction. This work was developed in order to find the kinetic model describing the sorption/desorption of phosphate in soils of the Argentinean Pampas region, to describe the processes associated with these reactions and to define the effect of temperature on them. A bi-linear model that adequately describes the data obtained in the adsorption and desorption experiments is proposed. Thus, it was possible to clearly differentiate two different kinetic mechanisms, each characterized by different reaction rates. Two very labile pools of phosphorus were determined in these soils. The rate at which these processes occur indicates the occurrence of chemical reactions of precipitation in highly soluble compounds and surface adsorption reactions with very low binding energy, as P is quickly released into the soil solution in the desorption process. However, since the amounts of P released in the desorption process are very much less than the adsorbed, is possible to infer that both processes occur at non-equilibrium conditions and there is a lack of reversibility of the reaction P-Soil – P-Solution in the soils studied. The intensity of these processes is differentially affected by temperature and, in general, there is a positive effect of phosphorus fertilization history, although the effect of this is not clearly seen in the amounts of extractable phosphorus with the classic Bray & Kurtz N°1 method.

Views: 432
Downloads PDF: 333

 

References


Abolfazli F, Forghani A, Norouzi M. 2012. Effects of phosphorus and organic fertilizers on phosphorus fractions in submerged soil. Journal of Soil Science and Plant Nutrition 12(2):349-362.

Addiscott TM, Thomas D. 2000. Tillage, mineralization and leaching: phosphate. Soil and Tillage Research 53:355-273.

Álvarez R, Evans LA, Milham PJ, Wilson MA. 2004. Effects of humic material on the precipitation of calcium phosphate. Geoderma 118:245-260.

Antelo J, Arce F, Avena M, Fiol S, López R, Macías F. 2007. Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate. Geoderma 138:12-19.

Atkins PW, de Paula J. 2006. The Kinetic Model. Chapter I -Topic 1B. In: Physical Chemistry. 8th edition. Oxford: Oxford University Press. p. 37-43.

Bermúdez M, Mallarino AP. 2007. Impacts of variable-rate phosphorus fertilization based on dense grid soil sampling on soil-test phosphorus and grain yield of corn and soybean. Agronomy Journal 99(3):822-832.

Ciopec M, Davidescu CM, Negrea A, Muntean C, Popa A, Negrea P, Lupa L. 2011. Equilibrium and Kinetic Studies of the Adsorption of Cr(III) Ions onto Amberlite XAD-8 Impregnated with Di-(2-ethylhexyl) Phosphoric Acid (DEHPA). Adsorption Science and Technology 29:989-1004.

Conti ME. 2000. Materia orgánica del suelo. En: Conti, ME, editor. Principios de edafología, con énfasis en suelos argentinos. 2ª edición. Buenos Aires: Editorial Facultad de Agronomía. p. 67-86.

Day PR. 1986. Particle fractionation and particle-size analysis. In: Black CA, editor. Methods of Soil Analysis. Madison WI, USA: ASA, SSSA and CSSA. p. 545-567.

Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW. 2013. InfoStat versión 2013. Córdoba, Argentina: Grupo InfoStat, FCA, Universidad Nacional de Córdoba. http://www.infostat.com.ar.

Galantini JA, Suner L. 2008. Las fracciones orgánicas del suelo: análisis en los suelos de la Argentina. Agriscientia (1):41-55.

Gorgas JA, Tassile JL, editores. 2006. Recursos naturales de la provincia de Córdoba. Los suelos, nivel de reconocimiento 1:500.000. Córdoba, Argentina: Agencia Córdoba Ambiente-Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Manfredi. 612 p.

Guppy CN, Menzies NW, Moody PW, Blamey FPC. 2005. Competitive sorption reactions between phosphorus and organic matter in soil: A review. Australian Journal of Soil Research 43(2):189-202.

Hang S, Negro GJ, Becerra MA, Rampoldi EA. 2015. Suelos de Córdoba. Variabilidad de las propiedades del horizonte superficial. Córdoba, Argentina: Editorial Maita. 100 p.

Hevia GG, Hepper EN, Buschiazzo DE, Peinemannn N. 2000. Factors affecting phosphorus-sorption in loess soils of the Semiarid Argentina. Agrochimica 64(3-4):81-88.

Horta MC, Torrent J. 2007. Phosphorus desorption kinetics in relation to phosphorus forms and sorption properties of Portuguese acid soils. Soil Science 172(8):631-638.

Huang L, Fub L, Jina C, Gielen G, Lin X, Wang H, Zhang Y. 2011. Effect of temperature on phosphorus sorption to sediments from shallow eutrophic lakes. Ecological Engineering 37(10):1515-1522.

Irizar A, Andriulo A, Cosentino D, Amendola C. 2010. Comparación de dos métodos de fraccionamiento físico de la materia orgánica del suelo. Ciencia del Suelo 28(1):115-121.

Jiang X, Jin X, Yao Y, Li L, Wu F. 2008. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Research 42:2251-2259.

Jin X, Wang S, Pang Y, Zhao H, Zhou X. 2005. The adsorption of phosphate on different trophic lake sediments Colloids and Surfaces A: Physicochemical and Engineering Aspects 254 (1-3):241-248.

Koopmans GF, Chardon WJ, de Willigen P, Van Riemsdijk WH. 2004. Phosphorus desorption dynamics in soil and the link to a dynamic concept of bioavailability. J Environ Qual. 33(4):1393-1402.

Kuo S. 1996. Phosphorus. In: Sparks DL, editor. Methods of Soil Analysis. Part 3. Madison, WI, USA: ASA, SSSA and CSSA. p. 869-919.

Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthès V, Krimissa M. 2007. Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry 22(2):249-275.

Lookman R, Freese D, Merckx R, Vlassak K, Van Riemsdijk WH. 1995. Long-Term Kinetics of Phosphate Release from Soil. Environmetal Science and Technology 29:1569-1575.

Martínez HE, Fuentes EJP, Acevedo HE. 2008. Carbono orgánico y propiedades del suelo. Revista de la Ciencia del Suelo y Nutrición Vegetal 8(1):68-96.

McGechan MB, Lewis DR. 2002. Sorption of Phosphorus by soil, Part 1: Principles, Equations and Models. Biosystems Engineering 82:1-24.

Mendoza RE. 1986. Isotermas de adsorción de fósforo en suelos argentinos: I. Métodos de ajuste y comparación entre ecuaciones. Ciencia del Suelo 4:107-116.

Mezenner NY, Bensmaili A. 2009. Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chemical Engineering Journal 147(2-3):87-96.

Millán G, Vázquez M, Terminiello A, Sbuscio DS. 2010. Efecto de las enmiendas básicas sobre el complejo de cambio en algunos suelos ácidos de la Región Pampeana. Ciencia del Suelo 28(2):131-140.

Nelson DW, Sommers LE. 1996. Total carbon, organic carbon, and organic matter. In: Page AL et al., editors. Methods of soil analysis. Part 3. 2nd ed. Madison, WI, USA: ASA and SSSA. p. 961-1010.

Pignatello JJ. 2000.The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Advances in Agronomy 69:1-73.

Pinto FA, De Souza ED, Paulino HB, Curi N, Carbone-Carneiro MA. 2013. P-Sorption and desorption in Savanna Brazilian soils as a support for phosphorus fertilizer management. Ciência e Agrotecnologia 37(6):521-530.

Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F. 2011. Phosphorus Dynamics: From Soil to Plant. Plant Physiology 156:997-1005.

Silva Rossi MM, Rollán AAC, Bachmeier OA. 2013. Phosphorus availability in the central area of the Argentine Pampean region. 1: Relationship between soil parameters, adsorption processes and wheat, soybean and corn yields in different soil and management environments. Spanish Journal of Soil Science 3(1):45-55.

Silva Rossi MM. 2011. Adsorción y desorción de fósforo en suelos del área central de la región pampeana. Tesis de Doctorado. Córdoba, Argentina: Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba. 160 p. Available in: https://rdu.unc.edu.ar/handle/11086/1678.

Soil Survey Staff. 2014. Keys to Soil Taxonomy. 12th ed. Washington DC, USA: USDA-Natural Resources Conservation Service. p. 123-134.

Sparks D. 1985. Kinetics of ionic reactions in clay minerals and soils. Advances in Agronomy 38:231-266.

SPSS Science. 2000. SigmaPlot® 2000 User’s Guide. Chicago, IL, USA: SPSS Science. 433 p.

Sumner ME, Miller WP. 1996. Cation exchange capacity and exchange coefficient. In: Sparks DL, editor. Methods of Soil Analysis. Part 3. Chemical Methods. Chapter 40. Madison, WI, USA: ASA, SSSA and CSSA. p. 1201-1230.

Taddesse AM, Claassens AS, de Jager PC. 2008. Long-term kinetics of phosphate desorption from soil and its relationship with plant growth. South African Journal of Plant and Soil 25(3):131-134.

Thomas GW. 1996. Soil pH and soil acidity. In: Sparks DL, editor. Methods of Soil Analysis. Part 3. Chemical Methods. Madison, WI, USA: ASA, SSSA and CSSA. p. 457-491.

Vázquez S, Morales LA, Fernández López C, Dalurzo HC. 2011. Fertilización fosfatada y fracciones de fósforo en alfisoles, ultisoles y oxisoles. Ciencia del Suelo 29(2):161-171.

Von Wandruszka R. 2006. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility. Geochemical Transactions 7(1):6.





With the patronage of
Universia
Avda. de Cantabria, s/n - 28660, Boadilla del Monte
Madrid, España