DOI:https://doi.org/10.3232/SJSS.2016.V6.N2.01

Is anaerobic mineralizable nitrogen suitable as a soil quality/health indicator?

Germán Franco Domínguez, Gisela Vanesa García, Guillermo Alberto Studdert, María de los Ángeles Agostini, Santiago Néstor Tourn, Magalí Noé Domingo

Abstract

Soil organic matter (SOM) and especially its labile fractions such as particulate organic matter (POM) are very sensitive to soil use and strongly influence soil ecosystem services. Particulate organic matter has been proposed as a soil quality/health indicator but its determination is tedious and time consuming (i.e. manhours). Anaerobic mineralizable nitrogen (AN) is closely related to the soil organic fraction and is very easily determined. Therefore, we proposed to evaluate AN as a soil quality/health indicator through the assessment of its relationship with SOM, POM, soil aggregate stability (AS), and maize (Zea mays L.) relative yield (RY) under different long term soil uses for cropping at Balcarce, Argentina (37º 45’ 14’’ S, 58º 17’ 52’’ W). Soil samples had been taken at two depths (0-5 and 5-20 cm) in the fall of 1998, 2000, 2003, 2006, 2009, and 2012 from a long term tillage system (TS, conventional (CT) and no-tillage (NT)) and nitrogen fertilization (NF, with and without nitrogen as fertilizer) experiment on a complex of Typic and Petrocalcic Argiudolls. Carbon contents in SOM (SOC), POM (POC) and AN were determined in all soil samples, whereas AS was determined in other soil samples taken in 2006, 2009 and 2012 from the arable layer (0-20 cm). Regardless of TS and NF, SOC, POC and AN decreased with time under cropping at both 5-20 and 0-20 cm. In the uppermost layer (0-5 cm) decreases of all three variables were observed only under CT. Anaerobically mineralized nitrogen variation related to SOC (R2 0.59 - 0.78, P < 0.05) and especially POC (R2 = 0.80-0.85, P < 0.05) variations. Likewise, changes in maize RY related better (R2 0.92 and 0.95 (P < 0.05) for CT and NT, respectively) to variation in AN, than to SOC and POC variations. Besides, changes in the aggregate mean weight diameter (DMWD) related acceptably to AN at 0-20 cm (R2 = 0.67, P < 0.05) and much better at 0-5 cm (R2 = 0.86, P < 0.05). Both coefficients of determination were higher than those obtained relating DMWD to SOC or POC. Given the easiness of its determination, its sensitivity, and that it relates to the variation of different key soil parameters and crop behavior, AN could be proposed as an effective soil quality/health indicator. However, studies should be carried out taking into account a broader range of soil and management situations in order to validate the trends observed in this work.
Views: 635
Downloads PDF: 491

 

References


Agostini MA, Monterubbianesi MG, Studdert GA, Maurette S. 2014. Un método simple y práctico para la determinación de densidad aparente. Ciencia del Suelo 32:171-176.

Agostini MA, Studdert GA, Domínguez GF. 2012. Relación entre el cambio en el diámetro medio de agregados y el carbono orgánico y sus fracciones. In: Proceedings of the XIX Congreso Latinoamericano and XXIII Congreso Argentino de la Ciencia del Suelo; 2012 Apr 16-20; Mar del Plata, Buenos Aires, Argentina. In CD.

Aparicio VC, Costa JL. 2007. Soil quality indicators under continuous cropping systems in the Argentinean Pampas. Soil Till Res. 96:155-165.

Buyanovsky GA, Wagner GH. 1986. Post-harvest residue input to cropland. Plant Soil 93:57-65.

Buyanovsky GA, Wagner GH. 1997. Crop residue input to soil organic matter in the Sanborn field. In: Paul EA, Paustian K, Elliott ET, Cole CV, editors. Soil organic matter in temperate ecosystems: Long-term experiments in North America. Boca Ratón, Florida, USA: CRC Press. p. 73-83.

Calviño PA, Echeverría HE. 2003. Incubación anaeróbica del suelo como diagnóstico de la respuesta a nitrógeno del maíz bajo siembra directa. Ciencia del Suelo 21:24-29.

Cambardella CA, Elliott ET. 1992. Particulate soil organic matter. Changes across a grassland cultivation sequence. Soil Sci Soc Am J. 56:777-783.

Casado-Murillo N, Abril A. 2013. Decomposition and carbon dynamics of crop residue mixtures in a semiarid long term no-till system: effects on soil organic carbon. Open Agric J. 7:11-21.

De-Boodt N, De-Leenheer L, Kirkham D. 1961. Soil aggregate stability indexes and crop yields. Soil Sci. 91:138-146.

Diovisalvi NV, Studdert GA, Domínguez GF, Eiza MJ. 2008. Fracciones de carbono y nitrógeno orgánicos y nitrógeno anaeróbico bajo agricultura continua con dos sistemas de labranza. Ciencia del Suelo 26:1-11.

Diovisalvi NV, Studdert GA, Reussi-Calvo NI, Domínguez GF, Berardo A. 2014. Estimating soil particulate organic carbon through total soil organic carbon content. Ciencia del Suelo 32:85-94.

Domínguez GF, Andersen A, Studdert GA. 2008. Cambios en la estabilidad de agregados en distintos sistemas de cultivo bajo siembra directa y labranza convencional. In: Proceedings of the XXI Congreso Argentino de la Ciencia del Suelo; 2008 May 13-16; Potrero de los Funes, San Luis, Argentina. In CD.

Domínguez GF, Diovisalvi NV, Studdert GA, Monterubbianesi MG. 2009. Soil organic C and N fractions under continuous cropping with contrasting tillage systems on mollisols of the southeastern pampas. Soil Till Res. 102:93-100.

Domínguez GF, Studdert GA. 2006. Balance de carbono en un molisol bajo labranza convencional. In: Proceedings of the XX Congreso Argentino de la Ciencia del Suelo; 2006 Sep 19-22; Salta-Jujuy, Argentina. In CD.

Domínguez GF, Studdert GA, Cozzoli MV, Diovisalvi NV. 2006. Relación entre el nitrógeno potencialmente mineralizable y el rendimiento de maíz. In: Proceedings of the XX Congreso Argentino de la Ciencia del Suelo; 2006 Sep 19-22; Salta-Jujuy, Argentina. In CD.

Domínguez GF, Studdert GA, Echeverría HE, Andrade FH. 2001. Sistemas de cultivo y nutrición nitrogenada en maíz. Ciencia del Suelo 19:47-56.

Doran JW, Parkin TB. 1996. Quantitative indicators of soil quality: a minimum data set. In: Doran JW, Jones AJ, editors. Methods for Assessing Soil Quality. SSSA Special Publication Nº 49. Madison, Wisconsin, USA: Soil Sci. Soc. Am. p. 25-37.

Echeverría HE, Sainz-Rozas HR. 2015. Nitrógeno. In: Echeverría HE, García FO, editors. Fertilidad de Suelos y Fertilización de Cultivos. 2nd ed. C.A. Buenos Aires, Argentina: INTA Ediciones. p. 189-228.

Echeverría HE, Sainz-Rozas HR, Barbieri PA. 2015. Maíz y sorgo. In: Echeverría HE, García FO, editors. Fertilidad de Suelos y Fertilización de Cultivos. 2nd ed. C.A. Buenos Aires, Argentina: INTA Ediciones. p. 435-478.

Echeverría HE, San-Martín NF, Bergonzi R. 2000. Métodos rápidos de estimación de nitrógeno potencialmente mineralizable en suelos. Ciencia del Suelo 18:9-16.

Eiza MJ, Fioriti N, Studdert GA, Echeverría HE. 2005. Fracciones de carbono orgánico en la capa arable: efecto de los sistemas de cultivo y de la fertilización nitrogenada. Ciencia del Suelo 23:59-68.

Eiza MJ, Studdert GA, Fioriti N, Domínguez GF. 2006. Estabilidad de agregados y materia orgánica total y particulada en molisoles de Balcarce. In: Proceedings of the XX Congreso Argentino de la Ciencia del Suelo; 2006 Sep 19-22; Salta-Jujuy, Argentina. In CD.

Fabrizzi KP, Morón A, García FO. 2003. Soil carbon and nitrogen organic fractions in degraded vs. non-degraded mollisols in Argentina. Soil Sci Soc Am J. 67:1831-1841.

Genovese MF, Echeverría HE, Studdert GA, Sainz Rozas H. 2009. Nitrógeno de amino azúcares en suelos: Calibración y relación con el nitrógeno incubado anaeróbico. Ciencia del Suelo 27:225-236.

Gregorich EG, Beare MH, McKim UF, Skjemstad JO. 2006. Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci Soc Am J. 70:975-985.

INTA. 1979. Carta de Suelos de la República Argentina. Buenos Aires, Argentina: Instituto Nacional de Tecnología Agropecuaria, Secretaría de Agricultura, Ganadería y Pesca, C.A.

Janzen HH. 2006. The soil carbon dilemma: Shall we hoard it or use it? Soil Biol Biochem. 38:419-424.

Keeney DR. 1982. Nitrogen-availability indexes. In: Page AL, editor. Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy Monograph 9. Madison, Wisconsin, USA: Am. Soc. Agron. and Soil Sci. Soc. Am. p. 711-733.

Keeney DR, Nelson DW. 1982. Nitrogen inorganic forms. In: Page AL, editor. Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy Monograph 9. Madison, Wisconsin, USA: Am. Soc. Agron. and Soil Sci. Soc. Am. p. 643-698.

Khan SA, Mulvaney RL, Ellsworth TR, Boast CW. 2007. The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual. 36:1821-1832.

Lal R. 2010. Enhancing eco-efficiency in agro-ecosystems through soil carbon sequestration. Crop Sci. 50:S-120-S-131.

Liebig MA, Tanaka DL, Wienhold BJ. 2004. Tillage and cropping effects on soil quality indicators in the northern Great Plains. Soil Till Res. 78:131-141.

Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O. 2006. SAS® for Mixed Models. 2nd ed. Cary, North Carolina, USA: SAS Institute Inc.

Luo K, Wang E, Sun OJ. 2010. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric Ecosyst Environ. 139:224-231.

Melchiori RJM, Novelli LE, Gregorutti VC, Caviglia OP. 2014. Stover quality and soil organic carbon in long-term nitrogen-fertilized maize. Agron J. 106:1709-1716.

Poirier V, Angers DA, Rochette P, Chantigny MH, Ziadi N, Tremblay G, Fortin J. 2009. Interactive effects of tillage and mineral fertilization on soil carbon profiles. Soil Sci Soc Am J. 73:255-261.

Puget P, Lal R. 2005. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Till Res. 80:201-213.

Quiroga RA, Studdert GA. 2015. Manejo del suelo e intensificación agrícola: agua y materia orgánica, dos aspectos clave. In: Echeverría HE, García FO, editors. Fertilidad de Suelos y Fertilización de Cultivos. 2nd ed. C.A. Buenos Aires, Argentina: INTA Ediciones. p. 73-100.

Reicosky DC, Sauer TJ, Hatfield JL. 2011. Challenging balance between productivity and environmental quality: tillage impacts. In: Hatfield JL, Sauer TJ, editors. Soil Management: Building a Stable Base for Agriculture. Madison, Wisconsin, USA: Am. Soc. Agron. and Soil Sci. Soc. Am. p. 13-37.

Reussi-Calvo N, Sainz-Rozas H, Echeverría H, Berardo A. 2013. Contribution of anaerobically incubated nitrogen to the diagnosis of nitrogen status in spring wheat. Agron J. 105:1-8.

Reussi-Calvo NI, Studdert GA, Calandroni MB, Diovisalvi NV, Cabria FN, Berardo A. 2014. Nitrógeno incubado en anaerobiosis y carbono orgánico en suelos agrícolas de Buenos Aires. Ciencia del Suelo 33:189-196.

Ritchie SW, Hanway JJ. 1982. How a corn plant develops. Special report 48. Ames, Iowa, USA: Iowa State University of Science and Technology. Cooperative Extension Service.

Sainz-Rozas HR, Calviño P, Echeverría HE, Barbieri PA, Redolatti M. 2008. Contribution of anaerobically mineralized nitrogen to the reliability of planting or presidedress soil nitrogen test in maize. Agron J. 100:1020-1025.

Sánchez SR, Studdert GA, Echeverría HE. 1996. Descomposición de residuos de cosecha en un Argiudol Típico. Ciencia del Suelo 14:63-68.

SAS Institute. 2004. SAS Online Doc, Versión 9. Cary, North Carolina, USA: SAS Institute Inc. Available from: www.sas.com.

Schlichting E, Blume HP, Stahr K. 1995. Bodenkundliches Praktikum. Hamburg, Germany: Paul Parey.

Schneiter AA, Miller JF. 1981. Description of sunflower growth stages. Crop Sci. 21:901-903.

Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till Res. 79:7-31.

Soil Survey Staff. 2014. Keys to soil taxonomy. Washington DC, USA: USDA, Natural Resources Conservation Service.

Soon YK, Haq A, Arshad MA. 2007. Sensitivity of nitrogen mineralization indicators to crop and soil management. Comm Soil Sci Plant Anal. 38:2029-2043.

Studdert GA, Domínguez GF, Agostini MA, Monterubbianesi MG. 2010. Cropping systems to manage Southeastern Pampas´ Mollisol health. I. organic C and mineralizable N. In: Liu X, Song C, Cruse RM, Huffman T, editors. New advances in research and management of world Mollisols. Proceedings of the International Symposium on Soil Quality and Management of World Mollisols; 2010 Jul 13-16; Harbin, Heilongjiang, P.R. China. p. 199-200.

Studdert GA, Domínguez GF, Zagame MC, Carabaca JC. 2015. Variación estacional de carbono orgánico particulado y nitrógeno anaeróbico. Ciencia del Suelo 33:65-78.

Triplett Jr. GB, Dick WA. 2008. No-tillage crop production: a revolution in agriculture. Agron J. 100(Supplement):S-153-S-165.

Wander M. 2004. Soil organic matter fractions and their relevance to soil function. In: Magdoff K, Weil RR, editors. Soil organic matter in sustainable agriculture. Boca Ratón, Florida, USA: CRC Press. p. 67-102.

Wander M, Nissen T. 2004. Value of soil organic carbon in agricultural lands. Mitig Adapt Strateg Global Ch. 9:417-431.

Weil RR, Magdoff F. 2004. Significance of soil organic matter to soil quality and health. In: Magdoff F, Weil RR, editors. Soil organic matter in sustainable agriculture. Boca Ratón, Florida, USA: CRC Press. p. 1-43.

Zadoks JC, Chang TT, Zonzak CF. 1974. A decimal code for the growth stages of cereals. Weed Res. 14:415-421.





With the patronage of
Universia
Avda. de Cantabria, s/n - 28660, Boadilla del Monte
Madrid, España