DOI:https://doi.org/10.3232/SJSS.2016.V6.N3.04

Soil organic carbon simulated with the AMG model in a high-organic-matter Mollisol

Rocío Moreno, Guillermo Alberto Studdert, María Gloria Monterubbianesi, Andrea Inés Irigoyen

Abstract

Soil organic carbon (SOC) management requires a precise knowledge of how it is affected by soil use. Simulation models could help for this purpose. The AMG model is simple, requires information that is easily available, and uses few parameters. This model has neither been calibrated/adjusted nor validated for loamy soils with high SOC concentrations. We hypothesized that AMG would satisfactorily simulate SOC stock changes in soils with these characteristics. The aims of this work were: 1) to adjust and validate AMG for different tillage systems, nitrogen (N) fertilization levels and crop types for loamy-high-SOC Mollisols, and 2) to simulate future SOC changes under different production scenarios. We used SOC stocks (0-20 cm depth) from three long-term experiments (1976-2012) (tillage systems, crop rotations, and N fertilization) in the Southeastern Buenos Aires Province, Argentina (37º 45' S, 58º 18' W) on a complex of Mollisols. Data from two of those experiments was split into two groups to adjust unknown model parameters and for cross validation. Data from the third experiment was used for independent validation. The model was used to simulate SOC stock variation (30 yr) under different combinations of initial SOC stocks (SOCi, three levels) and crop rotations (six rotations regarding continuous cropping and crop-pasture rotations). Model performance was evaluated through statistical indicators based on observed-simulated value differences, and simple linear regression of observed on simulated values. Cross validation yielded promising indicators with the mean observed-simulated value differences close to 0 (P > 0.05). Root mean square error (RMSE) and RMSE as percentage of the mean of observed values (RMSEp) were 6.0 Mg C ha-1 and 7.5%, respectively, which are acceptable. Simple linear regression of observed and simulated values was highly significant (P < 0.01) with intercept and slope not different from zero and one (P > 0.05), respectively, although R2 was low. Indicators of model performance by groups of treatments were, in general, acceptable and did not show clear trends associated with any management type. However, model performance was poorer under no tillage (NT) and N fertilization probably because of little observed data available for that treatment factor combination. Validation with independent data confirmed that AMG simulated SOC change satisfactorily. Future scenario simulations showed that when the SOCi stock was high (close to SOC saturation), even rotations with high intensification and carbon input produced a SOC stock decrease. Conversely, when the SOCi stock was low (35% loss of SOC with respect to saturation) all scenarios led to a SOC stock increase. However, AMG failed to acceptably simulate the expected effect of pastures in the rotation. The AMG model satisfactorily simulated SOC stock changes due to different management techniques of soils with a loamy surface texture and high original SOC stock. Therefore, the model could be used as a tool to help management planning with an admissible simulation error (RMSEp ~6%).


Views: 390
Downloads PDF: 368

 

References


Agnusdei MG, Colabelli MR, Fernández Grecco RC. 2001. Crecimiento estacional de forraje de pasturas y pastizales naturales del Sudeste Bonaerense. Boletín Técnico N° 152. Estación Experimental INTA Balcarce.

Ancelin O, Duranel J, Duparque A, Dersigny C, Fleutry L. 2007. Sols et matières organiques. Mémento pour des notions utiles et contre les idées reçues. Picardie (France): Chambres d’Agriculture Picardie et Agro-transfert-Ressources et Territories.

Andriulo A, Galantini JA, Irízar A. 2012. Fuentes de variación de los parámetros intervinientes en balances de carbono edáfico simplificados. In: Proceedings XIX Congreso Latinoamericano y XXIII Congreso Argentino de la Ciencia del Suelo. Mar del Plata; 2012 Apr. 16-20; Mar del Plata, Buenos Aires, Argentina. In CD.

Andriulo A, Mary B, Guerif J. 1999. Modelling soil carbon dynamics with various cropping sequences on the Rolling Pampas. Agronomie 19:365-377.

Bélanger G, Gastal F, Warembourg FR. 1992. The effects of nitrogen fertilization and the growing season on carbon partitioning in a sward of tall fescue (Festuca arundinacea Schreb.). Ann Bot. 70:239-244.

Caviglia OP, Andrade FH. 2010. Sustainable intensification of agriculture in the Argentinean Pampas: capture and use efficiency of environmental resources. Am J Plant Sci Biotech. 3(Sp. Issue 1):1-8.

Diovisalvi NV, Studdert GA, Domínguez GF, Eiza MJ. 2008. Fracciones de carbono y nitrógeno orgánicos y nitrógeno anaeróbico bajo agricultura continua con dos sistemas de labranza. Ciencia del Suelo 26:1-11.

Domínguez GF, Diovisalvi NV, Studdert GA, Monterubbianesi MG. 2009. Soil organic C and N fractions under continuous cropping with contrasting tillage systems on mollisols of the southeastern pampas. Soil Tillage Res. 102:93-100.

Domínguez GF, Studdert GA. 2006. Balance de carbono en un Mollisol bajo labranza convencional. In: Proceedings XXII Congreso Argentino de la Ciencia del Suelo; 2012 Sep. 19-22; Salta-Jujuy, Argentina. In CD.

Doran JW, Mielke LN. 1984. A rapid, low cost method for determination of soil bulk density. Soil Sci Soc Am J. 48:717-719.

Eiza MJ, Fioriti N, Studdert GA, Echeverría HE. 2005. Fracciones de carbono orgánico en la capa arable: efecto de los sistemas de cultivo y de la fertilización nitrogenada. Ciencia del Suelo 23:59-68.

Follett RF. 2001. Soil management concepts and carbon sequestration in cropland soils. Soil Tillage Res. 61:77-92.

Fox DG. 1981. Judging air quality model performance: a summary of the AMS workshop on dispersion models performance. Bull Am Meteorol Soc. 62:599-609.

Franzluebbers AJ. 2010. Achieving soil organic carbon sequestration with conservation agricultural systems in the Southeastern United States. Soil Sci Soc Am J 74:347-357.

Gupta HV, Beven KJ, Wagener T. 2006. Model calibration and uncertainty estimation. Encyclopedia Hydrological Sciences 131:17.

Guzmán JG, Al-Kaisi MM. 2010. Soil carbon dynamics and carbon budget of newly reconstructed tall-grass prairies in South Central Iowa. J Environ Qual. 39:136-146.

INTA. 1979. Carta de Suelos de la República Argentina. Buenos Aires (Argentina): Instituto Nacional de Tecnología Agropecuaria, Secretaría de Agricultura, Ganadería y Pesca.

Irízar AB, Milesi-Delaye LA, Andriulo AE. 2015. Projection of soil organic reserves in the Argentine Rolling Pampa under different agronomic scenarios. Relationship of these reserves with some soil proprieties. Open Agric J. 9:30-41.

Jørgensen SE, Bendoricchio G. 2001a. Introduction. In: Jørgensen SE, Bendoricchio G, editors. Fundamentals of ecological modelling. Kidlington (UK): Elsevier Science B.V. p. 1-18.

Jørgensen SE, Bendoricchio G. 2001b. Concepts of modelling. In: Jørgensen SE, Bendoricchio G, editors. Fundamentals of ecological modelling. Kidlington (UK): Elsevier Science B.V. p. 19-92.

Kobayashi K, Salam MU. 2000. Comparing simulated and measured values using mean squared deviation and its components. Agron J. 92:345-352.

Kong AYY, Six J. 2010. Tracing root vs. residue carbon into soils from conventional and alternative cropping systems. Soil Sci Soc Am J. 74:1201-1210.

Loague K, Green RE. 1991. Statistical and graphical methods for evaluating solute transport models: overview and application. J Contam Hydrol. 7:51-73.

Mary B, Wylleman R. 2001. Characterization and modelling of organic C and N in soil in different cropping systems. In: Proceedings of the 11th Nitrogen Workshop; 2001 Sep. 9-12; Reims, France. p. 251-252.

Microsoft 2013. Excel. Redmond (USA): Microsoft Inc.

Milesi-Delaye LA, Irízar AB, Andriulo AE, Mary B. 2013. Effect of continuous agriculture of grassland soils of the Argentine Rolling Pampa on soil organic carbon and nitrogen. Appl Environ Soil Sci. 2013:ID 487865, doi:10.1155/2013/487865.

Novelli LE, Caviglia OP, Melchiori RJM. 2011. Impact of soybean cropping frequency on soil carbon storage in Mollisols and Vertisols. Geoderma 167-168:254-260.

Piccolo GA, Andriulo AE, Mary B. 2008. Changes in soil organic matter under different land management in Misiones Province (Argentina). Sci Agric. 65:290-297.

Piñeiro G, Perelman S, Guerschman JP, Paruelo JM. 2008. How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecol Model. 216:316-322.

Powlson DS, Gregory PJ, Whalley WR, Quinton JN, Hopkins DW, Whitmore AP, Hirsch PR, Goulding KWT. 2011. Soil management in relation to sustainable agriculture and ecosystem services. Food Policy 36:S72-S87.

Quiroga RA, Studdert GA. 2015. Manejo del suelo e intensificación agrícola: agua y materia orgánica, dos aspectos clave. In: Echeverría HE, García FO, editors. Fertilidad de suelos y fertilización de cultivos, 2nd ed. Buenos Aires (Argentina): Ediciones INTA. p. 73-100.

R Core Team. 2015. R: A Language and Environment for Statistical Computing. Vienna (Austria): R Foundation for Statistical Computing.

Reicosky D, Sauer T, Hatfield J. 2011. Challenging balance between productivity and environmental quality: Tillage impacts. In: Hatfield J, Sauer T, editors. Soil Management: Building a Stable Base for Agriculture. Madison (USA): American Society of Agronomy-Soil Science Society of America. p. 13-37.

Saffih-Hdadi K, Mary B. 2008. Modeling consequences of straw residues export on soil organic carbon. Soil Biol Biochem. 40:594-607.

Sainz-Rozas H, Echeverría H, Angelini H. 2011. Niveles de materia orgánica y pH en suelos agrícolas de la Región Pampeana y Extrapampeana Argentina. Informaciones Agronómicas de Hispanoamérica 2:6-12.

Sánchez SR, Studdert GA, Echeverría HE. 1996. Descomposición de residuos de cosecha en un Argiudol típico. Ciencia del Suelo 14:63-68.

Schlichting E, Blume HP, Stahr K, 1995. Bodenkundliches Praktikum. Hamburg (Germany): Paul Parey.

Six J, Conant R, Paul EA, Paustian K. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155-176.

Smith P, Smith J, Powlson D, McGill W, Arah J, Chertov O, Coleman K, Franko U, Frolking S, Jenkinson D. 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153-225.

Soil Survey Staff. 2014. Keys to soil taxonomy. Washington, DC (USA): USDA, Natural Resources Conservation Service.

Stevenson FJ, Cole MA. 1999. Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients, 2nd ed. New York (USA): John Wiley & Sons.

Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchi N, Jenkins M, Minasny B, McBratney AB, Courcelles VDRD, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M. 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ. 164:80-99.

Studdert GA, Echeverría H. 2000. Crop rotations and nitrogen fertilization to manage soil organic carbon dynamics. Soil Sci Soc Am J. 64:1496-1503.

Studdert, GA, Echeverría H, Casanovas EM. 1997. Crop-pasture rotation for sustaining the quality and productivity of a Typic Argiudoll. Soil Sci Soc Am J. 61:1466-1472.

Studdert GA, Monterubbianesi MG, Domínguez GF. 2011. Use of RothC to simulate changes of organic carbon stock in the arable layer of a Mollisol of the Southeastern Pampas under continuous cropping. Soil Tillage Res. 117:191-200.





With the patronage of
Universia
Avda. de Cantabria, s/n - 28660, Boadilla del Monte
Madrid, España