DOI:https://doi.org/10.3232/SJSS.2017.V7.N2.02

Temporal variations of organic matter fractions of different lability in an Entic Haplustoll

Laura Antonela Iturri, Graciela Gloria Hevia, Montserrat Diaz Raviña, Daniel Eduardo Buschiazzo

Abstract

Stable and labile soil organic compounds play different roles in the soil. It is a question of how far soil organic matter (SOM) fractions with different labilities vary as a function of climatic and management conditions. In order to answer this question stable (organic C -C-, total N -N-, organic P -Po-), and labile SOM fractions (total carbohydrates -CHt- and hot water soluble carbohydrates -CHw-) were measured monthly for two years in the 10-cm soil top-layer of an Entic Haplustoll, under conventional tillage (CT), vertical tillage (VT) and no-till (NT). Results showed that contents of all analyzed organic fractions were higher in NT than in VT and CT in almost all sampling dates. All organic compounds were less variable with time in NT and VT than in CT, in agreement with the smaller soil disturbance of NT and VT compared to CT. The more labile fractions varied as a function of short term changes in the climatic conditions, mainly temperature. Under soil disturbing tillage systems, the most stable fractions tended to decrease and the more labile to increase with time. This was attributed to the transformation of the more stable into the more labile fractions, possibly due to the disruption of aggregates produced by tillage that favored SOM mineralization. Po was the less variable compound, even under the most disturbing tillage conditions. The quotients C/N, CHt/C and CHw/C evolved similarly in all tillage systems, indicating that that tillage systems change the amount but not the quality of SOM.

Views: 178
Downloads PDF: 123

 

References


Alvarez R, Lavado RS. 1998. Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina. Geoderma 83:127-141.

Alvarez R, Steinbach HS, De Paepe JL. 2017. Cover crops effects on soils and subsequent crops in the pampas: a meta-analysis. Soil Till Res. 170:53-65.

Amelung W, Flach KW, Zech W. 1997. Climate effects on soil organic matter composition in the Great Plains. Soil Sci Soc Am J. 61:115-123.

Aubert M, Bureau F, Vinceslas-Akpa M. 2005. Sources of spatial and temporal variability of inorganic nitrogen in pure and mixed deciduous temperate forest. Soil Biol Biochem. 37:67-79.

Blanco-Moure N, Gracia R, Bielsa, López MV. 2011. Long-term effects of no tillage on soil organic matter fractions in rainfed Aragon (NE) Spain. Spanish J Soil Sci. 1(1):116-121.

Bono A, Alvarez R, Buschiazzo DE, Cantet RJC. 2008. Tillage effects on soil carbon balance in a semiarid agroecosystem. Soil Sci Soc Am J. 72:1140-1149.

Bremner JM, Mulvaney CS. 1982. Nitrogen total. In: Page AL, Miller RH, Keeney DR, editors. Methods of Soil Analysis. Part 2. 2nd ed. Wisconsin: ASA. p. 595-624.

Buschiazzo DE. 2006. Management systems in southern South America. In: Peterson GA, Unger PW, Payne WA, editors. Dryland Agriculture. 2nd ed. Wisconsin: ASA/CSSA/SSSA. p. 395-426.

Buschiazzo DE, Panigatti JL, Unger P. 1999a. Effects of tillage systems on soil properties and crop productivity in the semiarid Argentinian Pampas. Soil Till Res. 49:105-116.

Buschiazzo DE, Zobeck TM, Aimar SB. 1999b. Wind erosion in loess soils of the semiarid Argentinean Pampas. Soil Sci. 164:133-138.

Conen F, Leifeld J. 2014. A new facet of soil organic matter. Agric Ecosyst Environ. 185:186-187.

Conen F, Morris CE, Leifeld J, Yakutin MV, Alewell C. 2011. Biological residues define the ice nucleation properties of soil dust. Atmos Chem Phys. 11:9643-9648.

Davidson EA, Janssens IA. 2005. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165-173.

Di Rienzo JA, Balzarini M, Casanoves F, González L, Tablada M, Robledo CW. 2002. Infostat/Professional version 1.1.

Díaz-Raviña, Bueno J, González-Prieto SJ, Carballas T. 2005. Cultivation effects on biochemical properties, C storage and 15N natural abundance in the 0-5 cm layer of an acidic soil from temperate humid zone. Soil Till Res. 84:216-221.

Díaz-Zorita M, Duarte GA, Groove JH. 2002. A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina. Soil Till Res. 65:1-6.

Díaz-Zorita M, Groove JH. 2002. Duration of tillage management affects carbon and phosphorus stratification in phosphatic Paleudalfs. Soil Till Res. 66:165-174.

Dick WA. 1983. Organic carbon, nitrogen and phosphorus concentrations and pH in soil profiles as affected by tillage intensity. Soil Sci Soc Am J. 47:102-107.

Doutre DA, Hay GW, Hood A, Vanloon GW. 1978. Spectrophotometric methods to determine carbohydrates in soil. Soil Biol Biochem. 10:457-462.

Fröhlich-Nowoisky J, Burrows SM, Xie Z, Engling G, Solomon PA, Fraser MP, Mayol-Bracero OL, Artaxo P, Begerow D, Conrad R, Andreae MO, Després VR, Pöschl U. 2012. Biogeography in the air: Fungal diversity over land and oceans. Biogeosciences 9:1125-1136.

Gili AA. 2012. Modelación de la variación espacial de variables edáficas y su aplicación en el diseño de planes de muestreo de suelos. PhD Thesis. National University of Cordoba. 190 p.

González-Prieto S, Díaz-Raviña M, Martín A, López-Fando C. 2013. Effects of agricultural management on chemical and biochemical properties of a semiarid soil from central Spain. Soil Till Res. 134:49-55.

Gregorich EG, Carter MR, Angers DA, Monreal CM, Ellert BH. 1994. Towards a minimum data set to assess soil organic matter quality in agricultural soil. Can J Soil Sci. 74:367-385.

Haynes RJ. 1999. Labile organic matter fractions and aggregate stability under short-term, grass-based leys. Soil Biol Biochem. 31:1821-1830.

Haynes RJ. 2005. Labile organic matter fractions as central components of the quality of agricultural soils: An Overview. Adv Agron. 85:221-268.

Hevia GG, Buschiazzo DE, Hepper EN, Urioste AM, Antón EL. 2003. Organic matter in size fractions of soils of the semiarid Argentina. Effects of climate, soil texture and management. Geoderma 116:265-277.

Hishi T, Hirobe M, Tateno R, Takeda H. 2004. Spatial and temporal patterns of water-extractable organic carbon (WEOC) of surface mineral soil in cool temperate forest ecosystem. Soil Biol Biochem. 36:1731-1737.

Hu S, Coleman DC, Beare MH, Hendrix PF. 1995. Soil carbohydrates in aggrading and degrading agroecosystems: influences of fungi and aggregates. Agr Ecosyst Environ. 54:77-88.

Hu S, Coleman DC, Carroll CR, Hendrix PF, Beare MH. 1997. Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types. Agr Ecosyst Environ. 65:69-78.

INTA, Gobierno de La Pampa, UNLPam. 1980. Inventario de los Recursos Naturales de la Provincia de La Pampa. Buenos Aires: Instituto Nacional de Tecnología Agropecuaria. 487 p.

Inzaurralde RC, Rosenberg NJ, Lal R. 2001. Mitigation of climate change by soil carbon sequestration: Issues of science, monitoring and degraded lands. Adv Agron. 70:1-75.

Kaila A. 1962. Determination of total organic phosphorus in samples of mineral soils. J Agr Sci Finland 34:187-196.

Kalbitz K, Schwesig D, Schmerwitz J, Kaiser K, Haumanier L, Glaser B, Ellerbrock R, Leinweber P. 2003. Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biol Biochem. 35: 1129-1142.

Kristensen HL, McCarty GW, Meisinger JJ. 2000. Effects of soil structure disturbance on mineralization of organic soil nitrogen. Soil Sci Soc Am J. 64:371-378.

Lal R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123:1-22.

Lang R. 1920. Verwitterung und Bodenbildung als Einführung in die Bodenkunde. Schweitzerbart’sche Verlag. Cited by Buol SW, Hole FD, McCracken RJ. 1983. Génesis y clasificación de suelos. Stuttgart, Germany: Trillas.

Leifeld J. 2006. Soil as sources and sinks of greenhouses gases. In: Frossad E, Blum WEH, Warkentin BP, editors. Function of soils for Human Societies and the Environment. Special Publications 266. London: Geological Society. p. 23-44.

Martín A, Carballas T, Díaz-Raviña M. 2011. Seasonal changes in the carbohydrate pool of an Atlantic forest soil under different vegetation. Spanish J Soil Sci. 1(1):38-53.

McLean EO. 1982. Soil pH and lime requirement. In: Page AL, Miller RH, Keeney DR, editors. Methods of Soil Analysis. Part 2. 2nd ed. Wisconsin: ASA. p. 199-224.

Moscatelli G, Puentes I. 1996. Caracterización edáfica de la región. In: Buschiazzo DE, Panigatti JL, Babinec FJ, editors. Labranzas en la Región Semiárida Argentina. INTA. p. 19-30.

Nelson RE. 1982. Carbonate and gypsum. In: Page AL, Miller RH, Keeney DR, editors. Methods of Soil Analysis. Part 2. 2nd ed. Wisconsin: ASA. p. 181-197.

Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S. 2016. Greenhouse gas emissions from soils-A review. Chemier der Erde - Geochemistry 76(3):327-352.

Post WM, Kwon KC. 2000. Soil carbon sequestration and land-use change: processes and potential. Global Change Biol. 6(3):317-328.

Pugget P, Angers DA, Chenu C. 1999. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Bio Biochem. 31:55-63.

Raphael JPA, Calonego JC, Milori DMBP, Rosolem CA. 2016. Soil organic matter in crop rotations under no-till. Soil Till Res. 155:45-53.

Schlichting E, Blume HP, Stahr K. 1995. Bodenkundliches Praktikum. Blackwell Wissenschafts. 225 p.

Selles F, McConkey BG, Campbell CA. 1999. Distribution and forms of P under cultivator –and zero-tillage for continuous-and fallow-wheat cropping systems in the semi-arid Canadian prairies. Soil Tillage Res. 51:47-59.

Soon YK, Arshad MA, Haq A, Lupwayi N. 2007. The influence of 12 years of tillage and crop rotation on total and labile organic carbon in a sandy loam soil. Soil Till Res. 95:68-46.

Stevenson FJ. 1986. Cycles of soil. New York: Wiley and Sons, Inc. 380 p.

Tisdall JM, Oades JM. 1982. Organic matter and water stable aggregates in soils. J Soil Sc. 33:14-163.

Walkley Y, Black IA. 1934. An examination of the Degrjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37:29-38.

Xie G, Steinberg J. 2001. Temporal patterns of C and N under shrub canopy in a loessial soil desert ecosystem. Soil Bio Biochem. 33:1371-1379.





With the patronage of
Universia
Avda. de Cantabria, s/n - 28660, Boadilla del Monte
Madrid, España
EMail: info@sjss.universia.net