Decomposition from legume and non-legume crop residues: Effects on soil organic carbon fractions under controlled conditions

Eduardo de Sá Pereira, Matias Ezequiel Duval, Juan Alberto Galantini


Cover crop (CC) residues protect the soil from erosion and their permanence on the surface is largely influenced by their biochemical constituents. We performed a study under controlled conditions to investigate the dynamics of legume and non-legume CC residues decomposition and the transformations of the soil labile organic carbon fractions in the surface layer (0-15 cm). The experiment was carried out on a Typic Argiudoll (clay loam, 27.4 g kg-1 soil organic matter, 14 mg kg-1 extractable phosphorus and 6.5 pH) placed in undisturbed pots (1570 cm3) in a greenhouse under controlled conditions of temperature (25 ± 1 °C). We evaluated three CC species (oat, Avena sativa L.; vetch, Vicia sativa L.; Persian clover, Trifolium resupinatum L.) and a no-CC control (fallow). Shoot residues were applied on the soil surface at 5.4, 5.4 and 2.7 g dry matter (equivalent to 6, 6 and 3 Mg ha-1 for oat, vetch and clover, respectively) and incubated for 362-days (eight sampling times). The water content in the pots was maintained periodically by weight at 60% of soil water-holding capacity. The soil samples were analyzed for particulate organic carbon (POC), and total and soluble carbohydrates (CHt and CHs, respectively). Oat and vetch residues decomposed faster than clover, with the decomposition rate constant (k) values of 1.3, 1.4 and 1.9 year-1, respectively. At the end of the experiment, POC concentration was lower in vetch (1.83 g kg-1) and clover (1.96 g kg-1) than in oat (2.21 g kg-1) and fallow (3.00 g kg-1), indicating a loss of 45-64% from their initial values. Soil CHt was influenced by residue quality, where the periods of greatest residue decay (vetch 21-59 days and oat 93-130 days) corresponded to higher soil CHt. Hence, this organic carbon fraction is sensitive to residue decomposition and can be indicators of changes in soil organic matter over short periods of time.

Views: 327
Downloads PDF: 242



Acosta JA. 2009. Dinâmica do nitrogênio sob sistema plantio direto e parâmetros para o manejo da adubação nitrogenada no milho. Doctoral dissertation. Santa Maria, RS. Brasil: Universidade Federal de Santa Maria.

Ambus P, Jensen ES. 1997. Nitrogen mineralization and denitrification as influenced by crop residue particle size. Plant Soil 197:261-270.

Bastida F, Kandeler E, Moreno JL, Ros M, García C, Hernández T. 2008. Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl Soil Ecol. 40:318-329.

Bremner JM. 1996. Total Nitrogen. In: Sparks DL, editor. Methods of Soil Analysis. Part 3. Chemical Methods. Madison, WI: SSSA-ASA. p. 1085-1123.

Carfagno PF, Eiza MJ, Quiroga A, Babinec F, Chagas C, Michelena R. 2013. Agua disponible en monocultivo de soja con cultivos de cobertura y barbechos reducidos en la Región Semiárida y Subhúmeda Pampeana. Ciencia del Suelo 31:67-81.

Ćirić V, Belić M, Nešić L, Šeremešić S, Pejić B, Bezdan A, Manojlović M. 2016. The sensitivity of water extractable soil organic carbon fractions to land use in three soil types. Arch Agron Soil Sci. 62:1654-1664.

Di Rienzo JÁ, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW. 2013. InfoStat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Douglas CL, Rickman RW. 1992. Estimating crop residue decomposition from air temperature, initial nitrogen content, and residue placement. Soil Sci Soc Am J. 56:272-278.

Duval ME, Capurro JE, Galantini JA, Andriani JM. 2015. Utilización de cultivos de cobertura en monocultivo de soja: efectos sobre el balance hídrico y orgánico. Ciencia del Suelo 33:247-261.

Duval ME, Galantini JA, Capurro JE, Martínez JM. 2016. Winter cover crops in soybean monoculture: Effects on soil organic carbon and its fractions. Soil Tillage Res. 161:95-105.

Duval ME, Galantini JA, Iglesias JO, Canelo S, Martínez JM, Wall L. 2013. Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil Tillage Res. 131:11-19.

Duval ME, Sá Pereira E de, Iglesias JO, Galantini JA. 2014. Efecto de uso y manejo de suelo sobres las fracciones de carbono orgánico en un Argiudol. Ciencia del Suelo 32:105-115.

Galantini JA, Senesi N, Brunetti G, Rosell R. 2004. Influence of texture on the nitrogen and sulphur status and organic matter quality and distribution in semiarid Pampean grassland soils. Geoderma 123:143-152.

Ghani A, Dexter M, Perrott KW. 2003. Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem. 35:1231-1243.

Hevia GG, Buschiazzo D, Hepper E, Urioste A, Antón E. 2003. Organic matter in size fractions of soils of the semiarid Argentina. Effects of climate, texture, management. Geoderma 116:265-277.

Klute A. 1986. Water retention: laboratory methods. In: Klute A, editor. Methods of Soil Analysis: Part 1. Physical and mineralogical methods. Madison, WI: ASA and SSSA. p. 635-661.

Kuo S, Sainju UM, Jellum EJ. 1997. Winter cover crop effects on soil organic carbon and carbohydrate in soil. Soil Sci Soc Am J. 61:145-152.

Kuzyakov Y. 2010. Priming effects: interactions between living and dead organic matter. Soil Biol Biochem. 42:1363-1371.

Li Z, Zhao B, Zhang J. 2016. Effects of maize residue quality and soil water content on soil labile organic carbon fractions and microbial properties. Pedosphere 26:829-838.

Lupwayi NZ, Clayton GW, O'Donovan JT, Harker KN, Turkington TK, Rice WA. 2004. Decomposition of crop residues under conventional and zero tillage. Can J Soil Sci. 84:403-410.

Mazzoncini M, Sapkota TB, Bàrberi P, Antichi D, Risaliti R. 2011. Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil Tillage Res. 114:165-174.

Moraes Sá JC de, Lal R. 2009. Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil Tillage Res. 103:46-56.

Moraes Sá JC de, Tivet F, Lal R, Briedis C, Hartan DC, dos Santos JZ, dos Santos JB. 2014. Long-term tillage systems impacts on soil C dynamics, soil resilience and agronomic productivity of a Brazilian Oxisol. Soil Tillage Res. 136:38-50.

Parton WJ, Silver WL, Burke IC, Grassens L, Harmon ME, Currie B, King JY. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361-364.

Poeplau C, Don A. 2015. Carbon sequestration in agricultural soils via cultivation of cover crops–A meta-analysis. Agric Ecosyst Environ. 200:33-41.

Puget P, Angers DA, Chenu C. 1999. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biol Biochem. 31:55-63.

Quemada M. 2005. Predicting crop residue decomposition using moisture adjusted time scales. Nutr Cycl Agroecosys. 70:283-291.

Rasse D, Rumpel C, Dignac MF. 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341-356.

Rimski-Korsakov H, Alvarez CR, Lavado RS. 2015. Cover crops in the agricultural systems of the Argentine Pampas. Journal of Soil and Water Conservation 70:134A-140A.

Sá Pereira E de, Galantini JA, Quiroga AR, Landriscini MR. 2014. Efecto de los cultivos de cobertura otoño invernales, sobre el rendimiento y acumulación de N en maíz en el sudoeste bonaerense. Ciencia del Suelo 32:219-231.

Scholberg JM, Dogliotti S, Zotarelli L, Cherr CM, Leoni C, Rossing WA. 2010. Cover Crops in Agrosystems: Innovations and Applications. In: Lichtfouse E, editor. Sustainable Agriculture Reviews 4: Genetic engineering, biofertilisation, soil quality and organic farming. New York (NY): Springer. p. 59-98.

Schomberg HH, Steiner JL, Unger PW. 1994. Decomposition and nitrogen dynamics of crop residues: residue quality and water effects. Soil Sci Soc Am J. 58:372-381.

Soil Survey Staff. 2010. Keys to Soil Taxonomy. 11th ed. Washington (DC): USDA-Natural Resources Conservation Service. 365 p.

Tian G, Brussaard L, Kang BT. 1995. An index for assessing the quality of plant residues and evaluating their effects on soil and crop in the (sub-) humid tropics. Appl Soil Ecol. 2:25-32.

Van Soest PV, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci. 74:3583-3597.

Wander MM, Traina SJ. 1996. Organic fractions from organically and conventionally managed soils: I. Carbon and nitrogen distribution. Soil Sci Soc Am J. 60:1081-1087.

Wang Q, Li Y, Alva A. 2010. Cropping systems to improve carbon sequestration for mitigation of climate change. J Environ Protec. 1:207-215.

With the patronage of
Avda. de Cantabria, s/n - 28660, Boadilla del Monte
Madrid, España