DOI:https://doi.org/10.3232/SJSS.2018.V8.N2.06

Macroporosity of a Typic Argiudoll with different cropping intensity under no-tillage

Filipe Behrends Kraemer, Héctor José María Morrás

Abstract

Soil macropores are dominant pathways of water flow and their impact on hydraulic properties is directly related to their geometrical and topological characteristics. A number of field and micromorphological analysis have shown that agriculture management under no-tillage promotes the development of a microstructure characterized by platy aggregates and horizontal planes in the topsoil, together with a densification at a subjacent layer, thus raising questions about physical properties and water dynamics under this system of cultivation. Moreover, scarce information is available about the evolution of pore architecture and physical parameters in soils under no-till with different cropping intensity. The objective of this work was to evaluate soil porosity in a silty loam A horizon of a Typic Argiudoll (Monte Buey series) of northern Pampa Region (Argentina) under two no-tilled contrasting managements: Good Agricultural Practices (GAP) –highly intensified cropping sequence including corn and wheat in addition to soybean-, Poor Agricultural Practices (PAP) -simplified crop sequence, with predominance of soybean- and a Natural Environment (NE) as reference. Topsoil porosity was assessed by micromorphology, micromorphometry and water retention curves approach, and the values obtained were related to some physical and chemical variables. Results of the morphological analysis revealed important differences between both agricultural treatments. In the surface layer in GAP, platy aggregates are thick and result from the cohesion of rounded microaggregates of biological origin; in PAP they are thin and dense, resulting mostly from compaction of individual soil particles and small microaggregates. A soil densification is evident in both agricultural treatments at 5-10 cm depth, although the morphology and size of aggregates and pores also differ between them. Micromorphometric analyses have shown differences in total macroporosity as well as in the size, morphology and orientation of macropores between both treatments. Macroporosity values obtained by digital methods were coincidently reflected by the pressure plate method. Porosity variables measured by digital analysis, in particular elongated pores and pore orientation, appear more sensitive than other soil properties (total carbon, aggregate stability, bulk density) in discriminating treatments. Although no-till cultivation led to the formation of platy microstructures and a decrease of soil porosity compared to NE, both agricultural treatments presented optimal values of Ks and water movement was not impaired. As expected, all morphological and analytical soil variables were better in the NE treatment. In addition, it was interesting to verify that the values of several parameters were close or similar between GAP and NE. Even when more intensified crop sequence (GAP) increases machinery traffic, morphological, physical and chemical soil properties were here improved compared to PAP. In this case, the higher proportion of different graminea into the agricultural cycle, besides its effect on the development of root biopores, seems to promote a higher fauna activity which effectively counteracts the vertical mechanical compression produced by traffic. These results suggest that, in addition to the known benefits of non-tillage on soil conservation, the improvement of various soil properties could be achieved by integrating this method of cultivation with suitable agricultural managements.

Views: 240
Downloads PDF: 190

 

References


Agostini MA, Studdert GA, Domínguez GF, Toun SN. 2013. Intensificación del uso del suelo: Efecto sobre algunas propiedades físicas y el carbono orgánico total. In: Jornadas Argentinas de Conservación de Suelos; 2013 Jul 2-4; Buenos Aires, Argentina.

Álvarez CR, Fernández PL, Taboada MA. 2012. Relación de la inestabilidad estructural con el manejo y propiedades de los suelos en la región pampeana. Ciencia del Suelo (Argentina) 30(2):173-178.

Álvarez C, Gutiérrez F, Taboada M, Prystupa P, Ocampo J, Fernández P, Moulin M, Vaccaro H. 2004. Propiedades físicas, químicas y biológicas del suelo bajo distintos manejos en el norte de Buenos Aires. In: Actas del XIX Congreso Argentino de la Ciencia del Suelo; 2004 Jun 22-25; Paraná, Argentina.

Álvarez R, Steinbach HS. 2009. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crop yield in the Argentine Pampas. Soil Till Res. 104:1-16.

Álvarez CR, Taboada MA, Perelman S, Morrás HJM. 2014. Topsoil structure in no-tilled soils in the Rolling Pampa, Argentina. Soil Res. http://dx.doi.org/10.1071/SR13281.

Austin AT, Pineiro G, González-Polo M. 2006. More is less: agricultural impacts on the N cycle in Argentina. Biogeochemistry 79:45-60.

Ball BC, Robertson EAG. 1994. Soil structural and transport properties associated with poor growth of oil-seed rape in soil direct drilled when wet. Soil Till Res. 31:119-133.

Balzarini MG, González L, Tablada M, Casanoves F, Di Rienzo JA, Robledo CW. 2008. Infostat. Manual del Usuario. Córdoba, Argentina: Editorial Brujas.

Bauder JW, Randall GW, Swann JB. 1981. Effect of four continuous tillage systems on mechanical impedance of a clay loam soil. Soil Sci Soc Am J. 44:802-806.

Blake GR, Hartge KH. 1986. Bulk density. In: Klute A, editor. Methods of Soil Analysis Part 1. Physical and Minerological Methods. Madison, WI: ASA, SSSA. p. 363-376.

Bonel B, Morrás H, Bisaro V. 2005. Modificaciones de la microestructura y la materia orgánica en un suelo Argiudol bajo distintas condiciones de cultivo y conservación. Ciencia del Suelo (Argentina). 23:1-12.

Bouma J, Jongerius A, Boersma O, Jager A, Schoonderbeek D. 1977. The function of different types of macropores during saturated flow through four swelling soil horizons. Soil Sci Soc Am J. 41:945-950.

Carrizo E, Alesso CA, Cosentino D, Imhoff S. 2015. Aggregation agents and structural stability in soils with different texture and organic carbon. Sci Agric. 72(1):75-82.

Castellini M, Pirastru M, Niedda M, Ventrell D. 2013. Comparing physical quality of tilled and no-tilled soils in an almond orchard in southern Italy. Italian J Agron. 8:20.

Castiglioni MG, Morrás HJM. 2007. Uso del análisis digital de imágenes para el estudio de la porosidad de la zona no saturada de Argiudoles de Argentina. In: Giráldez Cervera JV, Jiménez Hornero FJ, editors. Estudios de la Zona no Saturada del Suelo. Vol. 7. p. 83-88.

Castiglioni M, Morrás H, Santanatoglia O, Altinier M, Tessier D. 2007. Movimiento del agua edáfica en Argiudoles de la Pampa Ondulada con diferente mineralogía de arcillas. Ciencia del Suelo (Argentina). 25:109-121.

Cavalieri KMV, Silva AP, Tormena CA, Leão TP, Dexter AR, Hakansson I. 2009. Long-term effects of no-tillage on dynamic soil physical properties in a Rhodic Ferralsol in Paraná, Brazil. Soil Till Res. 103:158-164.

Caviglia, OP, Andrade FH. 2010. Sustainable intensification of agriculture in the argentinean pampas: capture and use efficiency of environmental resources. Am J Plant Sci Biotechnol. 3:1-8.

Chagas C, Marelli H, Santanatoglia O. 1994. Propiedades físicas y contenido hídrico de un Argiudol típico bajo tres sistemas de labranza. Ciencia del Suelo (Argentina) 12:11-16.

Costantini E, Pellegrini S, Vignozzi N, Barbetti R. 2006. Micromorphological characterization and monitoring of internal drainage in soils of vineyards and olive groves in central Italy. Geoderma 131:388-403.

Derpsch R. 2002. Sustainable Agriculture. In: Saturnino HM, Landers JN, editors. The Environment and Zero Tillage. Brasília: Associação de Plantio Direto no Cerrado. p. 31-52.

Derpsch R, Franzluebbers AJ, Duiker SW, Koeller K, Friedrich T, Sturny WG, Sá JCM, Weiss K. 2014. Why do we need to standardize no-tillage research? Soil Till Res. 137:16-22.

Derpsch R, Friedrich T, Kassam A, Li H. 2010. Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng. 3:1-26.

Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW. 2012. InfoStat versión 2012. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.

Duchicela J, Sullivan T, Bontti E, Bever J. 2013. Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the Bolivian Altiplano. J Appl Ecol. 50:1266-1273.

Duval ME, Galantini JA, Iglesias JO, Canelo S, Martínez JM, Wall L. 2013. Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil Till Res. 131:11-19.

Duval M, Galantini J, Martínez J, López F, Wall L. 2015. Evaluación de la calidad edáfica de los suelos de la región pampeana: efectos de las prácticas de manejo. Revista de Investigaciones de la Facultad de Ciencias Agrarias-UNR 0(25):033-043.

Fernández PL, Kraemer FB, Morrás HJM. 2012. Porosidad y microestructura superficial de un Argiudol típico en distintos momentos bajo diferentes manejos agropecuarios. In: Actas del XIX Congreso Latinoamericano de la Ciencia del suelo, AACS; 2012 Apr 16-20; Mar del Plata, Argentina.

Figuerola EL, Guerrero LD, Rosa SM, Simonetti L, Duval ME, Galantini JA, Bedano JC, Wall LG, Erijman L. 2012. Bacterial indicator of agricultural management for soil under no-till crop production. PLoS One 7(11):e51075.

Fox D, Bryan R, Fox C. 2004. Changes in pore characteristics with depth for structural crusts. Geoderma 120:109-120.

Greenland DJ. 1977. Soil damage by intensive arable cultivation: temporary or permanent? Phil Trans Royal Soc London 281:193-208.

Imhoff S, Ghiberto PJ, Grioni A, Gay JP. 2010. Porosity Characterization of Argiudolls under Different Management Systems in the Argentine Flat Pampa. Geoderma 158:268-274.

Jones CA. 1983. Effect of Soil Texture on Critical Bulk Densities for Root Growth. Soil Sci Soc Am J. 47:1208-121.

Kirkegaard JA, Hunt JR. 2010. Increasing productivity by matching farming system management and genotype in water-limited environments. J Exp Bot. 61:4129-4143.

Klute A, Dirksen C. 1986. Hydraulic conductivity and diffusivity: laboratory methods. In: Klute A, editor. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 2nd ed. Agron. Monogr. 9. Madison, WI: ASA, SSSA. p. 687-734.

Kraemer FB. 2015. Influencia de la granulometría y la mineralogía en el comportamiento hidro-físico y estructural en suelos con distinta intensidad y secuencia de cultivos bajo siembra directa. PhD Thesis. Escuela para Graduados Alberto Soriano, Facultad de Agronomía, Universidad de Buenos Aires, Argentina.

Kraemer FB, Castiglioni MG, Carnevale L, Fernandez PL, Morrás HJM. 2014. Porosidad estructural y textural en manejos bajo siembra directa en la región pampeana. In: Actas del XXIV Congreso Argentino de la Ciencia del Suelo, AACS; 2014 May 5-9; Bahía Blanca, Argentina.

Kraemer FB, Castiglion MG, Morrás H. 2018. Evaluación micromorfométrica de la porosidad de un Argiudol típico con dos intensidades de uso bajo siembra directa. Cienc Suelo (Argentina) 36(1):138-157.

Kraemer FB, Soria MA, Castiglion MG, Duval M, Galantini J, Morrás H. 2017. Morphostructual evaluation of various soils subjected to different use intensity under no-tillage. Soil Till Res. 169:124-137.

Kutílek M. 2004. Soil hydraulic properties as related to soil structure. Soil Till Res. 75:175-184.

Lavelle P, Charpentier F, Cillenave C, Rossi JP, Derouard L, Pashanasi B, André J, Ponge JF, Bernier N. 2004. Effects of earthworms on soil organic matter and nutrient dynamics at a landscape scale over decades. In: Edwards CA, editor. Earthworm Ecology, 2nd edition. Boca Raton, Florida: CRC Press. p. 145-160.

Le Bissonnais Y. 1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur J Soil Sci. 47:425-437.

Loaiza J, Stoops G, Poch R, Casamitjana M. 2015. Manual de micromorfología de suelos y técnicas complementarias. Medellín, Colombia: Fondo Editorial Pascual Bravo. 384 p.

Lozano LA. 2015. Desarrollo de estructura laminar del suelo en siembra directa. Factores predisponentes y efectos sobre las propiedades hidráulicas. PhD Thesis. Universidad Nacional de La Plata, Buenos Aires, Argentina.

Maggi A, Kraemer FB, Introcaso R, Thompson D. 2016. Caracterización física y química de un Argiudol vértico de la Pampa Ondulada con erosión hídrica en el surco y entresurco. Ciencia del Suelo (Argentina) 34(1):113-126.

Mahboubi AA, Lal R, Faussey NR. 1993. Twenty-eight years of tillage effects on two soils in Ohio. Soil Sci Soc Am J. 57:506-512.

Mallory JJ, Mohtar RH, Heathman GC, Schulze DG, Braudeau E. 2011. Evaluating the effect of tillage on soil structural properties using the pedostructure concept. Geoderma 163:141-149.

Moretti LM, Favret EA, Morrás HJM. 2012. Un procedimiento de medición de la porosidad en cortes delgados de suelos. Acta Microscópica 21(A):73.

Morrás H. 2014. Porosidad y microestructura de suelos. In: Loaiza JC, Stoops G, Poch RM, Casamitjana M, editors. 2014. Manual de micromorfología de suelos y técnicas complementarias. Medellín, Colombia: Fondo Editorial Pascual Bravo.

Morrás HJM, Bonel BA, Kraemer FB, Álvarez CA. 2012. Topsoil microstructural models in no-till Pampean Mollisols of Argentina. Morphology and development. In: Proceedings of the 14th International Working Meeting on Soil Micromorphology; 2012 Jul 8-14; Lleida, España.

Morrás HJM, Bonel BA, Michelena R. 2004. Características microestructurales del horizonte superficial de algunos suelos pampeanos bajo siembra directa. In: Actas XIX Congreso Argentino de la Ciencia del Suelo, AACS; 2004 Jun 22-25; Paraná, Argentina.

Morrás H, Bonel B, Moretti L, Favret E, Bressan E. 2008. Porosidad y microestructura superficial de un Argiudol típico bajo siembra directa y labranza reducida. In: Actas XXI Congreso Argentino de la Ciencia del Suelo, AACS; 2008 May 13-16; San Luis, Argentina.

Mualem Y. 1986. Hydraulic conductivity of unsaturated soils: Prediction and formulas. In: Klute A, editor. Methods of Soil Analysis, Part 1. Physical and mineralogical methods. Madison, WI: ASA, SSSA. p. 799-823.

Novelli LE, Caviglia OP, Melchiori RJM. 2011. Impact of soybean cropping frequency on soil carbon storage in Mollisols and Vertisols. Geoderma 167-68:254-260.

Novelli LE, Caviglia OP, Wilson MG, Sasal MC. 2013. Land use intensity and cropping sequence effects on aggregate stability and C storage in a Vertisol and a Mollisol. Geoderma 195-196:260-267.

Or D, Wraith JM. 2000. Soil water content and water potential relationships. In: Sumner ME, editor. Handbook of Soil Science. Boca Raton, Florida: CRC Press. p. 53-85.

Pachepsky YA, Timlin D, Varallyay D. 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci Soc Am J. 60:727-733.

Pagliai M. 1987. Effects of different management practices on soil structure and surface crusting. Soil Micromorphol. 7:415-421.

Pagliai M. 1988. Soil porosity aspects. International Agrophysics 4:215-232.

Pagliai M, De Nobili M. 1993. Relationships between soil porosity, root development and soil enzyme activity in cultivated soils. Geoderma 56:243-256.

Pagliai M, Kutilek M. 2008. Soil Micromorphology and Soil Hydraulics. In: Kapur S, Mermut A, Stoops G, editors. New Trends in Soil Micromorphology. Berlin: Springer Verlag.

Pagliai M, La Marca M, Lucamante G. 1983. Micromorphometric and micromorphological investigations of a clay loam soil in viticulture under zero and conventional tillage. J Soil Sci. 34:391-403.

Pagliai M, Marca LA, Lucamante G, Genovese L. 1984. Effects of zero and conventional tillage on the length and irregularity of elongated pores in a clay loam soil under viticulture. Soil Till Res. 4:433-444.

Pagliai M, Marsili A, Servadio P, Vignozzi N, Pellegrini S. 2003. Changes in some physical properties of a clay soil in central Italy following the passage of rubber tracked and wheeled tractors of medium power. Soil Till Res. 73:119-129.

Pagliai M, Vignozzi N, Pellegrini S. 2004. Soil structure and the effect of management practices. Soil Till Res. 79:131-143.

Pastorelli R, Vignozzi N, Landi S, Piccolo R, Orsini R, Seddaiu G, Roggero P, Pagliai M. 2013. Consequences on macroporosity and bacterial diversity of adopting a no-tillage farming system in a clayish soil of Central Italy. Soil Biol Biochem. 66:78-93.

Peng X, Horn RF, Hallet PD. 2015. Soil structure and its functions in ecosystems: Phase matter & scale matter. Soil Till Res. 146:1-3.

Perfect E, Kay BD, van Loon WKP, Sheard RW, Pojasok T. 1990. Factors influencing soil structural stability within a growing season. Soil Sci Soc Am J. 54:173-179.

Pires LF, Borges JAR, Rosa JA, Cooper M, Heck RJ, Passoni S, Roque WL. 2017. Soil structure changes induced by tillage systems. Soil Till Res. 165:66-79.

Pires LF, Cássaro FAM, Reichardt K, Bacchi OS, Dias NMP. 2008. Micromorphological analysis to characterize structure modifications of soil samples submitted to wetting and drying cycles. Catena 72:297-304.

Pittelkow CM, Liang X, Linquist BA, Van Groenigen KJ, Lee J, Lundy ME, Van Gestel N, Six J, Venterea RT, van Kessel C. 2015. Productivity limits and potentials of the principles of conservation agriculture. Nature 517:365-368.

Rasa K, Eickhorst T, Tippkötter R, Yli-Halla M. 2012. Structure and pore system in differently managed clayey surface soil as described by micromorphology and image analysis. Geoderma 173-174:10-18.

Räty M, Uusi-Kämppä J, Yli-Halla M, Rasa K, Pietola P. 2010. Phosphorus and nitrogen cycles in the vegetation of differently managed buffer zones. Nutrient Cycling in Agroecosystems 86:121-132.

Reynolds WD, Bowman BT, Drury CF, Tan CS, Lu X. 2002. Indicators of good soil physical quality: density and storage parameters. Geoderma 110:131-146.

Reynolds WD, Drury CF, Yang XM, Tan CS. 2008. Optimal Soil Physical Quality Inferred through Structural Regression and Parameter Interactions. Geoderma 146: 466-74.

Richards LA. 1948. Porous plate apparatus for measuring moisture retention and transmission by soil. Soil Sci. 66:105-110.

Roduit N. 2008. JMicroVision: Image analysis toolbox for measuring and quantifying components of high-definition images. Version 1.2.7. http://www.jmicrovision.com.

Rosa SM, Kraemer FB, Soria MA, Guerrero LD, Morrás HJM, Figuerola ELM, Erijman L. 2014. The influence of soil properties on denitrifying bacterial communities and denitrification potential in no-till production farms under contrasting management in the Argentinean Pampas. Appl Soil Ecol. 75:172-180.

Sasal C, Andriulo A, Taboada M. 2006. Soil porosity characteristics and water movement under zero tillage in silty soils in argentinian pampas. Soil Till Res. 87:9-18.

Sasal MC, Boizard H, Andriulo AE, Wilson MG, Léonard J. 2017b. Platy structure development under no-tillage in the northern humid Pampas of Argentina and its impact on runoff. Soil Till Res. 173:33-41.

Sasal C, Castiglioni MG, Ferreiro JP, Wilson MG, Oszust J. 2009. Propiedades hidrológicas edáficas bajo diferentes secuencias de cultivos en siembra directa. In: Silva O, et al. Estudios en la Zona no Saturada del Suelo. Vol IX Barcelona: 2009 Nov 18-20.

Sasal MC, Castiglioni MG, Wilson MG. 2010. Effect of crop sequences on soil properties and runoff on natural rainfall erosion plots under no tillage. Soil Till Res. 108:24-29.

Sasal MC, Léonard J, Andriulo A, Boizard H. 2017a. A contribution to understanding the origin of platy structure in silty soils under no tillage. Soil Till Res. 173:42-48.

Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till Res. 79:7-31.

Snedecor GW, Cochran WG. 1980. Statistical methods. 7th edition. Ames: Iowa State University Press. 305 p.

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

Stoops G. 2003. Guidelines for analysis and description of soil and regolith thin sections. Madison, WI: Soil Science Society of America. 184 p.

Studdert GA, Echeverría HE. 2000. Crop rotations and nitrogen fertilization to manage soil organic carbon dynamics. Soil Sci Soc Am J. 64:1496-1503.

Taboada MA, Micucci FG, Cosentino DJ, Lavado RS. 1998. Comparison of compaction induced by conventional and zero tillage in two soils of the Rolling Pampa of Argentina. Soil Till Res. 49:57-63.

Tebrügge F, Düring RA. 1999. Reducing tillage intensity: a review of results from a long-term study in Germany. Soil Till Res. 53:15-28.

Thomas GW, Hasxler GR, Blevins RL. 1996. The effects of organic matter and tillage on maximum compactability of soils using the proctor test. Soil Sci. 161:502-508.

van Genuchten MT. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am. J. 44:892-898.

VandenBygaard A, Fox AC, Fallow DJ, Protz R. 2000. Estimating Earthworm-Influenced Soil Structure by Morphometric Image Analysis. Soil Sci Soc Am J. 64(3):982-988.

VandenBygaart A, Protz R, Tomlin A, Miller J. 1999. Tillage system effects on near-surface soil morphology: observations from the lanscape to micro-scale in silt loam soils of southwestern Ontario. Soil Till Res. 51:139-149.

Vázquez L, Myhre DL, Gallaher RN, Hanlon EA, Portier KM. 1989. Soil compaction associated with tillage treatments for soybean. Soil Till Res. 13:35-45.

Viglizzo EF, Frank FC, Carreno LV, Jobbágy EG, Pereyra H, Clatt J, Pincén D, Ricard MF. 2011. Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Global Change Biol. 17: 959-973.

Wall LG. 2011. The BIOSPAS Consortium: Soil Biology and Agricultural Production. In: de Bruijn FJ, editor. Handbook of Molecular Microbial Ecology I. Hoboken, NJ: John Wiley & Sons, Inc. p. 299-306.

Watson KW, Luxmoore RJ. 1986. Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Sci Soc Am J. 50:578-582.

Wilson M, Oszust J, Sasal C, Paz Gonzales A. 2010. Variación espacial de la resistencia mecánica a la penetración y su relación con estados estructurales del suelo bajo distintas secuencias de cultivos. In: Actas del XXII Congreso Argentino de la Ciencia del Suelo, AACS; 2010 May 31-04; Rosario, Argentina.

Zaccagnini M, Calamari N. 2001. Labranzas conservacionistas, siembra directa y biodiversidad. In: Panigatti J, Buschiazzo D, Marelli H, editors. Siembra Directa II. Buenos Aires: Ediciones del INTA. p. 29-68.





With the patronage of
Universia
Avda. de Cantabria, s/n - 28660, Boadilla del Monte
Madrid, España