Effect of organic amendments and sulfur on chemical and biological properties of a sodic soil

Richar Manuel Simanca Fontalvo, Jairo Leonardo Cuervo Andrade


Saline soils cause concern in the productive systems of arid and semi-arid regions of the planet, since they cause a decrease in crop yield due to the osmotic effect, the presence of excess exchangeable Na which causes degradation of the soil structure, and the effect of the specific ion (Na, Cl, B) that can cause toxicity and imbalances in the nutrition of plants. Therefore, it is necessary to look for management alternatives to improve the productivity of these soils. To this end, we evaluated the effect of the application of Prosopis juliflora green manure (GM), palm oil residue vermicompost  (VERM) and mineral sulfur (S°), on the chemical and biological properties of a Typic Haplustept sodium soil cultivated with Zea mays, using 3 t of organic matter ha-1 of GM or VERM and 1.4 t ha-1 of S° as unique treatments or mixed applications. The biological properties of soil microbial biomass (BMS), soil microbial respiration (RMS) and the activity of the enzymes phosphatases (alkaline and acid), protease and hydrolytic activity of the soil through the hydrolysis of fluorescein diacetate (FDA) were determined; as well as some chemical properties of the soil associated with sodicity. The effect on the biological properties of the soil depended on the type of amendment used and its composition, due to the differences found between treatments. In general, the application of organic amendments positively affected the RMS, BMS and the hydrolytic activity of the soil, while the application of S° increased the BMS but decreased the RMS and the enzymatic activity of phosphatases, proteases and hydrolases. The chemical variables studied also showed significant differences between treatments, with the presence of S° presenting significant differences in the greatest number of variables. In conclusion, applications of organic amendments mixed with S° positively affect the biological and chemical properties of sodium soils of the Colombian Caribbean region, since BMS is stimulated and sodium saturation is reduced.
Views: 21
Downloads PDF (Español (España)): 18



Adam G, Duncan H. 2001. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem. 33:943-951.

Aguilera M, Reina Y, Orozco A, Yabrudy J, Barcos R. 2013. Composición de la economía de la región caribe de Colombia. Ens Econ Reg-ESER- 53:1-66.

Alef K, Nannipieri P. 1995. Methods in applied soil microbiology and biochemistry. London: Academic Press.

Ali U, Sajid N, Khalid A, Riaz L, Rabbani M, Syed JH, Malik R. 2015. A review on vermicomposting of organic wastes. Envir Prog Sust Energy 34(4):1050-1062.

Amini S, Ghadiri H, Chen C, Marschner P. 2015. Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. J Soils Sedim. 16(3):939-953.

Araujo JL, Severo P, Lucena F, Veriato R, Paiva K. 2015. Enxofre elementar ou sulfato de cálcio para remediação de solos salino-sódicos? Pesq Agropec Trop. 45(4):388-396.

Caldwell B. 2005. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia 49:637-644.

Celis J, Sandoval M, Martínez B, Quezada C. 2013. Effect of organic and mineral amendments upon soil respiration and microbial biomass in a saline-sodic soil. Cien Inv Agr. 40(3):571-580.

Dias A, Neto DA, Prisco JT, Enéas-filho J, Lacerda C. 2004. Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz J Plant Phys. 16(1):31-38.

Dinesh R, Suryanarayana M, Ghoshal S, Sheeja T. 2004. Long-term influence of leguminous cover crops on the biochemical properties of a sandy clay loam Fluventic Sulfaquent in a humid tropical region of India. Soil Till Res. 77(1):69-77.

Eivazi F, Tabatabai M. 1977. Phosphatases in soils. Soil Biol Bioch. 9:167-172.

Ellaiah P, Srinivasulu B, Adinarayana K. 2002. A review on microbial alkaline proteases. J Sc Ind Res. 61(9):690-704.

Fageria NK, Gheyi HR, Moreira A. 2011. Nutrient bioavailability in salt affected soils. J Plant Nutr. 34(7):945-962.

Farooq M, Hussain M, Wakeel A, Kadambot H, Farooq M, Hussain M, Wakeel A. 2015. Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev. 35(2):461-481.

Fontaine S, Mariotti A, Abbadie L. 2003. The priming effect of organic matter: A question of microbial competition? Soil Biol Bioch. 35(6):837-843.

Fu S, Cheng W, Susfalk R. 2002. Rhizosphere respiration varies with plant species and phenology: A greenhouse pot experiment. Plant and Soil 239(1):133-140.

Garrido M, Martínez J, Martínez H, Granados R, Rendón R. 2017. Pequeños productores de maíz en el Caribe colombiano: Estudio de sus atributos y prácticas agrícolas. Corpoica Cien Tecnol Agropec. 18(1):7-23.

Geisseler D, Horwath W. 2009. Relationship between carbon and nitrogen availability and extracellular enzyme activities in soil. Pedobiologia 53(1):87-98.

Gharaibeh M, Eltaif N, Albalasmeh A. 2011. Reclamation of highly calcareous saline sodic soil using Atriplex Halimus and by product Gypsum. Inter J Phytorem. 13(9):873-883.

Guerrero R. 1990. Fertilización de cultivos en clima medio. Monómeros colombo venezolanos. Bogotá D.C.: Monómeros Colombo Venezolanos.

Gupta V, Lawrence J, Germida J. 1988. Impact of elemental sulfur fertilization on agricultural soils. I. Effects on microbial biomass and enzyme activities. Can J Soil Sci. 68:463-473.

Gutiérrez C, Zúñiga O, Ospina-Salazar D. 2016. Effect of three biowastes on the productivity potential of a sodic soil. Agro Colomb. 34(2):250-259.

Hashemimajd K, Farani T, Jamaati-e-Somarin S. 2012. Effect of elemental sulphur and compost on pH, electrical conductivity and phosphorus availability of one clay soil. Afric J Biotech. 11(6):1425-1432.

Hernández-Araujo J, Gascó-Guerrero G, Mármol L, Bárcenas J, Polo V. 2013. Bioremediation of saline soils using organic materials. II. Leaching of salts. Rev Fac Agr U Zulia 30(4):481-503.

Instituto Geografico Agustin Codazzi (IGAC). 2006. Métodos analíticos de laboratorio del suelo. Bogotá D.C.: IGAC.

Jaggi R, Aulakh M, Sharma R. 1999. Temperature effects on soil organic sulphur mineralization and elemental sulphur oxidation in subtropical soils of varying pH. Nutr Cyc Agr. 54(2):175-182.

Karimizarchi M, Aminuddin H, Khanif M, Radziah O. 2014. Elemental sulphur application effects on nutrient availability and sweet maize (Zea mays L.) response in a high pH soil of Malaysia. Malay J Soil Sci. 18:75-86.

Ladd J, Butler J. 1972. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol Biochem. 4:19-30.

Mahmoodabadi M, Yazdanpanah N, Sinobas L, Pazira E, Neshat A. 2012. Reclamation of calcareous saline sodic soil with different amendments (I): Redistribution of soluble cations within the soil profile. Agric Water Manag. 120:30-38.

Marschner P, Solaiman Z, Rengel Z. 2007. Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biol Bioch. 39(1):87-98.

Mogollón J, Tremont O, Rodríguez N. 2011. Efecto del uso de un vermicompost sobre las propiedades biológicas y químicas de suelos degradados por sales. Venesuelos 9(1-2):48-57.

Mukhopadhyay S, Joy V. 2010. Influence of leaf litter types on microbial functions and nutrient status of soil: Ecological suitability of forest trees for afforestation in tropical laterite wastelands. Soil Biol Bioch. 42(12):2306-2315.

Nannipieri P, Giagnoni L, Landi L, Renella G. 2011. Role of phosphatase enzymes in soil. In: Bünemann E, Oberson A, Frossard E, editors. Phosphorus in action: biological processes in soil phosphorus cycling, Volumen 26. Berlin: Springer. p. 215-244.

Oo AN, Iwai CB, Saenjan P. 2013. Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with or without earthworms. Land Degr Dev. 26(3):300-310.

Pulido C. 2000. Distribución geográfica de sales solubles, sodio intercambiable y carbonato de calcio en la región del Caribe colombiano. Suelos Ecuat. 30(1):44-49.

Qadir M, Oster JD. 2002. Vegetative bioremediation of calcareous sodic soils: History, mechanisms, and evaluation. Irrig Sci. 21:91-101.

Reyes-Reyes B, Zamora-Villafranco E, Reyes-Reyes M, Trías-Hernández J, Olalde-Portugal V, Dendooven L. 2003. Decomposition of leaves of huisache (Acacia tortuoso) and mesquite (Prosopis spp.) in soil of the central highlands of Mexico. Plant and Soil 256:359.370.

Saha S, Mina B, Gopinath K, Kundu S, Gupta H. 2008. Relative changes in phosphatase activities as influenced by source and application rate of organic composts in field crops. Bior Tech. 99(6):1750-1757.

Sarasvati S, Sujata B, Amita S. 2014. Effects of fermentation on nutritional quality of Prosopis juliflora pods as alternative fish feed. Res J Ani Vet Fish Sci. 2(12):1-7.

Silva N, Bitencourt A, Moura M, Costa V, Silva R, Rodrigues R, Ferreira A. 2015. Short-term effect of different green manure on soil chemical and biological properties. Afric J Agric Res. 10(43):4076-4081.

Singh K. 2016. Microbial and enzyme activities of saline and sodic soils. Land Degr Dev. 27:706-718.

Singh K, Singh B, Singh R. 2013. Effect of land rehabilitation on physicochemical and microbial properties of a sodic soil. Catena 109:49-57.

Singh K, Trivedi P, Singh G, Singh B, Patra D. 2014. Effect of different leaf litters on carbon, nitrogen and microbial activities of sodic soils. Land Degr Dev. 27(4):1215-1226.

Sinha R, Bhati M, Sumit M, Gupta V. 2013. Removal of Cr(VI) by Prosopis cineraria leaf powder-A green remediation. Ind J Chem Tech. 20(5):312-316.

Soil Survey Staff. 2014. Keys to soil taxonomy. 12th edition. Washington DC: Natural Resources Conservation Service, USDA.

Srivastava P, Gupta M, Singh N, Tewari S. 2014. Amelioration of sodic soil for wheat cultivation using bioaugmented organic soil amendment. Land Degr Dev. 27(4):1245-1254.

Stamford N, Silva A, Freitas A, Araujo J. 2002. Effect of sulphur inoculated with Thiobacillus on soil salinity and growth of tropical tree legumes. Bior Tech. 81(1):53-59.

Turner BL. 2010. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl Environ Microbiol. 76:6485-6493.

Vallejo V, Arbeli Z, Terán W, Lorenz N, Dick R, Roldán F. 2012. Effect of land management and Prosopis juliflora (Sw.) DC trees on soil microbial community and enzymatic activities in intensive silvopastoral systems of Colombia. Agric Ecos Env. 150:139-148.

Wong V, Dalal R, Greene R. 2009. Carbon dynamics of sodic and saline soils following gypsum and organic material additions: A laboratory incubation. App Soil Ecol. 41(1):29-40.

Wong V, Greene R, Dalal R, Murphy B. 2010. Soil carbon dynamics in saline and sodic soils: A review. Soil Use and Manag. 26(1):2-11.

Yazdanpanah N, Pazira E, Neshat A, Mahmoodabadi M, Rodríguez L. 2012. Reclamation of calcareous saline sodic soil with different amendments (I): Redistribution of soluble cations within the soil profile. Agric Wat Manag. 120:30-38.

Zidan I, Azaizeh H, Neumann P. 1990. Does salinity reduce growth in maize root epidermal-cells by inhibiting their capacity for cell-wall acidification. Plant Phys. 93:7-11.

With the patronage of
Avda. de Cantabria, s/n - 28660, Boadilla del Monte
Madrid, España