DOI:https://doi.org/10.3232/SJSS.2019.V9.N3.01

Biogeodiversity and pedodiversity islands in arid lands of Europe (Almería Province, Spain)

Juan José Ibáñez, Rufino Pérez-Gómez, Cecilio Oyonarte, Alfred Zinck

Abstract

Plant and soil landscapes across bioclimatic belts and drainage basins were studied using georeferenced databases in arid lands of SE Spain, the driest area of Europe. The syntaxonomic system was used to analyze phytocenoses and bioclimatic belts, as well as the concept of potential natural vegetation (PNV), a common approach in many countries of continental Europe. Soil types included in pedological databases were classified using the World Reference Base for Soil Resources international system (FAO 1998). Both bioclimatic belts and drainage basins effectively discriminate soil and plant assemblages in the study area of the Almeria province. The syntaxonomic perspective permits distinguishing between PNV dependent on (i) climate (climatophylous), (ii) climate and lithology, and (iii) soils (edaphophylous). Richness-area relationships of plant and soil assemblages fit well to power law distributions, showing few idiosyncratic differences. PNV, lithological associations, and soil richness are clearly correlated with the area of each climatic beltand watershed. PNV and pedotaxa richness (understood as a number of taxa at a given hierarchical level) increases from the mountain tops to the coastal lands. Around 59% of the PNV units are edaphophylous and 87% of these are edaphohygrophylous that require water supply or tolerate water excess in riverbed ramblas (dry watercourses). Edaphohygrophylous PNV are distributed in small patches within a very arid matrix. They can be considered as plant “biodiversity islands”, a concept different from that of “fertility islands” used by ecologists in arid land studies. The spatial dispersion of these phytocenoses prevents adequate preservation in the frame of conservation biology policies. At landscape level, the extent of plant communities is as follows: PNV climate dependent > PNV climate-lithology dependent > PNV soil dependent. The diversity of plant communities follows an opposite trend: PNV soil dependent > PNV climate-lithology dependent > PNV climate dependent. The PNV most conditioned by soil properties are located along the streambeds of ramblas. These fluvial sediments are not reported as soil materials in soil maps. PNV, soils and lithological associations by drainage basins conform to the predictions of the statistical tool termed nested subsets theory. However, lithological associations by climatic belts depart from this spatial pattern. 

Views: 153
Downloads PDF: 92

 

References


Aguilar-Ruiz J, Martín-Peinado F, Sierra-Aragón M, Ortiz-Silla R, Oyonarte C. 2004. Mapa Digital de Suelos: Provincia de Almería. Dirección General para la Biodiversidad. Madrid: Ministerio de Medio Ambiente.

Aliat T, Kaabeche M, Khomri H, Nouri L, Neffar S, Chenchouni H. 2016. A pedological characterization of some inland wetlands and Ramsar sites in Algeria. Land Degrad Develop. 27(3):693-705. doi: 10.1002/ldr.2467.

Alonso-Sarría F, Martínez-Hernández C, Romero-Díaz A, Cánovas-García F, Gomariz-Castillo F. 2016. Main environmental features leading to recent land abandonment in Murcia Region (Southeast Spain). Land Degrad Develop. 27(3):654-670. doi: 10.1002/ldr.2447.

Atmar W, Patterson BD. 1993. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373-382.

Atmar W, Patterson BD. 1995. [Internet]. Nestedness temperature calculator: a visual basic program, including 294 presence-absence matrices. Chicago: AICS Res. Inc., University Park, NM, and The Field Mus. [cited 2018 Jan 9]. Available from: https://sites.google.com/a/fieldmuseum.org/bruce-pattersons-lab/Home/research-areas/nested-subsets.

Barbero-Sierra C, Marqués MJ, Ruiz-Pérez M, Escadafal R, Exbrayat W. 2015. How is desertification research addressed in Spain? Land versus soil approaches. Land Degrad Develop. 26(5):423-432.

Blanca G, Cuento M, Martínez-Lirola MJ, Molero-Mesa J. 1998. Threatened vascular flora of Sierra Nevada (Southern Spain). Biol Conserv. 85:269-285. doi:10.1016/S0006-3207(97)00169-9.

Brandt CJ, Thornes JB, editors. 1996. Mediterranean desertification and land use. Chichester, UK: John Wiley and Sons Ltd. ISBN 978-0-471-94250-4.

Buol SW. 1965. Present soil-forming factors and processes in arid and semiarid regions. Soil Sci. 99:45-49. doi 10.1097/00010694-196501000-00008.

Cambardella CA, Moorman TB, Parkin TB, Karlen DL, Novak JM, Turco RF, Konopka AE. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J. 58(5):1501-1511. doi:10.2136/sssaj1994.03615995005800050033x.

Cantón Y, Solé-Benet A, de Vente J, Boix-Fayos C, Calvo-Cases A, Asensio C, Puigdefábregas J. 2011. A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain. J Arid Environ. 75:254-1261. doi:10.1016/j.jaridenv.2011.03.004.

Carrión JS, Fuentes N, González-Sampériz P, Sánchez-Quirante L, Finlayson JC, Fernández S, Andrade A. 2007. Holocene environmental change in a montane region of southern Europe with a long history of human settlement. Quaternary Sci Rev. 26:1455-1475.

Chamizo S, Cantón Y, Rodríguez-Caballero E, Domingo F. 2016 Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrol. 9(7):1208-1221. doi: 10.1002/eco.1719.

CMAYOT. 2004. Mapa del modelo de distribución de los pisos bioclimáticos de Andalucía. Junta de Andalucía [Internet]. [modified 2018 May 10; cited 2019 Jan14) Available from:

https://descargasrediam.cica.es/repo/s/RUR?path=%2F04_RECURSOS_NATURALES%2F01_BIODIVERSIDAD%2F01_VEGETACION_ECOSISTEMAS%2F04_BIOGEOGRAFIA%2FPisosBioclim_Modelo.

CMAYOT. 2005. Cartografía y evaluación de la vegetación de la masa forestal de Andalucía (VEGE10). Junta de Andalucía [Internet]. [modified 2014; cited 2019 Jan14]. Available from: https://04_recursos_naturales/01_biodiversidad/01_vegetacion_ecosistemas/01_vegetacion_natural/02_ecosistemas_forestales/01_vegetacion_10000/vege10_carto.

Cooker RV, Warren A. 1973. Geomorphology in deserts. Berkeley: University of California Press, 374 p. ISBN 0-520-02280-7.

Cortés-Sánchez M, Jiménez-Espejo FJ, Simón-Vallejo MD, Gibaja-Bao JF, Faustino Carvalho A, Martínez-Ruiz F, Rodrigo-Gámiz M, Flores JA, López-Sáez L, Peña Chocarro L, Carrión JS, Morales-Muñiz A, Roselló-Izquierdo E, Riquelme-Cantal JA, Dean RM, Salgueiro E, Martínez Sánchez RM, De-la-Rubia-de-Gracia JJ, Lozano-Francisco MC, Vera-Peláez JL, Llorente-Rodríguez L, Bicho NF. 2012. The Mesolithic–Neolithic transition in southern Iberia. Quaternary Research 77:221-234.

Dahlberg AC. 2000. Vegetation diversity and change in relation to land use, soil and rainfall - A case study from North-East District, Botswana. J Arid Environ. 44(1):19-40.

Driessen P, Deckers J, Spaargaren O, Nachtergaele F, editors. 2001. Lecture notes on the major soils of the world. World Soil Resources Reports, 94. Rome: FAO.

FAO. 1998. World Reference Base for Soil Resources. World Soil Resources Report No. 84. Rome: ISSS-ISRIC-FAO.

Feoli E, Pérez-Gómez R, Oyonarte C, Ibáñez JJ. 2015. Using spatial data mining to analyze area-diversity patterns among soil, vegetation, and climate: A case study from Almería, Spain. Geoderma 287:164-169. http://dx.doi.org/10.1016/j.geoderma.2016.09.011.

García-Alix A, Jiménez-Espejo FJ, Lozano JA, Jiménez-Moreno G, Martínez-Ruiz F, García-Sanjuán L, Aranda-Jiménez G, García-Alfonso E, Ruiz-Puertas G, Anderson RS. 2013. Anthropogenic impact and lead pollution throughout the Holocene in Southern Iberia. Sci Total Environ. 449:451-460. doi: 10.1016/j.scitotenv.2013.01.081.

Ibáñez JJ, Bockheim J, editors. 2013. Pedodiversity. Boca Raton, FL: CRC Press.

Ibáñez JJ, Caniego J, García-Álvarez A. 2005b. Nested subset analysis and taxa-range size distributions of pedological assemblages: implications for biodiversity studies. Ecol Model. 182:239-256.

Ibáñez JJ, Caniego J, San-José, F, Carrera C. 2005a. Pedodiversity-Area Relationships for Islands. Ecol Model. 182:257-269. doi: 10.1016/j.ecolmodel.2004.04.005.

Ibáñez JJ, De-Alba S, Bermúdez FF, García-Álvarez A. 1995. Pedodiversity: concepts and measures. Catena 24:215-232. doi:10.1016/0341-8162(95)00028-Q.

Ibáñez JJ, Effland WR. 2011. Toward a theory of Island Pedogeography: Testing the driving forces for pedological assemblages in archipelagos of different origins. Geomorphology 135(3-4):215-223. doi: 10.1016/j.geomorph.2011.02.010.

Ibáñez JJ, Feoli E. 2013. Global relationships of pedodiversity and biodiversity. Vadose Zone 12(3). doi:10.2136/vzj2012.0186.

Ibáñez JJ, Jiménez-Ballesta R, García-Álvarez A. 1990. Soil Landscapes and drainage basins in Mediterranean mountain areas. Catena 17:573-583. doi:10.1016/0341-8162(90)90031-8.

Ibáñez JJ, Pérez-Gómez R, Brevik EC, Cerdà A. 2016b. Islands of biogeodiversity in arid lands on a polygons map study: detecting scale invariance patterns from natural resources maps. Sci Total Environ. 573:1638-1647.

Ibáñez JJ, Pérez-Gómez R, Ganis P, Feoli E. 2016a. The use of vegetation series to assess α and β vegetation diversity and their relationships with geodiversity in the province of Almería (Spain) with watersheds as operational geographic units. Plant Biosystems 150(7):11395-1407.

Ibáñez JJ, Pérez-Gómez R, Oyonarte C, Brevik EC. 2015. Are there arid land soilscapes in southwestern Europe? Land Degrad Develop. 26(8):853-862. doi: 10.1002/ldr.2451.

Ibáñez JJ, Saldaña A, Olivera D. 2012. Biodiversity and pedodiversity: a matter of coincidence? Spanish J Soil Sci. 2(3):8-12. doi: 10.3232/SJSS.2012.V2.N3.01.

Ibáñez JJ, Zinck JA, Dazzi C. 2013. Soil geography and diversity of the European biogeographical regions. Geoderma 92:142-153. doi: 10.1016/j.geoderma.2012.07.024.

IGME-Junta Andalucía. 2011. Mapa Geológico-Minero de Andalucía a escala 1:400.000. [Internet]. [cited 2019 Jan14]. Available from: http://www.juntadeandalucia.es/economiainnovacioncienciayempleo/pam/ApdoCartografiaGeologica.action#.

IGN. 2009. Modelo Digital del Terreno-MDT200. [Internet]. [modified 2018 Apr 11; cited 2019 Jan14]. Available from: http://centrodedescargas.cnig.es/CentroDescargas/index.jsp.

Klausmeier A. 1999. Regular and irregular patterns in semiarid vegetation. Science 284:1826-1828. doi: 10.1126/science.284.5421.1826.

Lo Papa G, Palermo V, Dazzi C. 2011. Is land-use change a cause of loss of pedodiversity? The case of the Mazzarrone study area, Sicily. Geomorhology 135:332-342. doi:10.1016/j.geomorph.2011.02.015.

Loidi J, Fernández-González F. 2012. Potential natural vegetation: reburying or reboring? J Veg Sci. 23:596-604. doi: 10.1111/j.1654-1103.2012.01387.x.

Lorenzo A, Dahan O, Medialdea A, Benito G. 2007. Estimación de la recarga en lechos fluviales mediante sondas TDR flexibles durante eventos de avenida (Río Andarax, Almería). In: Giráldez-Cervera JV, Jiménez-Hornero FJ, editors. Actas de las VIII Jornadas de Investigación de la Zona no Saturada del Suelo; 2007 Nov; Córdoba; p. 115-120. ISBN 84-690-7893-8.

Magurran AE. 2004. Measuring Biological Diversity. Oxford, UK: Blackwell.

Mairota P, Thornes JB, Geeson N. 1997. Atlas of Mediterranean environments in Europe: the desertification context. Chichester, UK: Wiley and Sons. ISBN 0-471-96092-6.

Marchamalo M, Hooke JM, Sandercock PJ. 2016. Flow and sediment connectivity in semi-arid landscapes in SE Spain: Patterns and controls. Land Degrad Develop. 27(4):1032-1044. doi: 10.1002/ldr.2352.

Martínez-Fernández J, Esteve MA. 2005. A critical view of the desertification debate in southeastern Spain. Land Degrad Develop. 16:529-539. doi: 10.1002/ldr.707.

Mirkin BM. 1989. Plant taxonomy and syntaxonomy: a comparative analysis. Vegetatio 82:35-40.

Muñoz-Muñoz JA. 2000. Cultura del agua. Aprovechamiento hidráulico integral en un entorno tradicional de extrema aridez -Campos de Níjar (Almería) [internet]. Narria 89-90-91-92:12-21. [cited 2019 Jan 19]. Available from: http://hdl.handle.net/10486/8601.

Ollier CD. 1976. Catenas in different climates. In: Derbyshire E, editor. Geomorphology and climate. Chichester: Wiley. p. 137-170.

Ortuño VM, Gilgado JD, Jiménez-Valverde A, Sendra A, Pérez-Suárez G, Herrero-Borgoñón JJ. 2013. The “Alluvial Mesovoid Shallow Substratum”, a new subterranean habitat. PLoS ONE 8(10):e76311. doi:10.1371/journal.pone.0076311.

Patterson BD, Atmar W. 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol J Linnean Soc. 28:65-82.

Patterson BD, Brown JH. 1991. Regionally nested patterns of species composition in granivorous rodent assemblages. J Biogeogr. 18:395-402.

Pueyo S. 2006. Self-similarity in species-area relationship and in species abundance distribution. Oikos 112:156-162. dOI: 10.1111/j.0030-1299.2006.14184.x.

Pugnaire FI, Armas C, Valladares F. 2004. Soil as a mediator in plant-plant interactions in a semi-arid community. J Veg Sci. 15:85-92. doi: 10.1111/j.1654-1103.2004.tb02240.x.

Puigdefábregas J, Mendizábal T. 1998. Perspectives on desertification: western Mediterranean. J Arid Environ. 9:209-224. doi:10.1006/jare.1998.0401.

Rivas-Martínez S. 2005. Notions on dynamic-catenal phytosociology as a basis of landscape science. Plant Biosystems 139:135-144.

Rodríguez-Lloveras X, Bussi G, Francés F, Rodríguez-Caballero E, Solé-Benet A, Calle M, Benito G. 2015. Patterns of runoff and sediment production in response to land-use changes in an ungauged Mediterranean catchment. J Hydrol. 531:1054-1066. doi. 10.1016/j.jhydrol.2015.11.014.

Schlesinger WH, Pilmanis AM. 1998. Plant-soil interactions in deserts. Biogeochemistry 42:169-187. doi:10.1023/A:1005939924434.

Schlesinger WH, Raikes JA, Hartley AE, Cross AF. 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364-374. doi: 10.2307/2265615.

Shentsis I, Rosenthal E. 2003. Recharge of aquifers by flood events in an arid region. Hydrol Process. 17:695-712. doi: 10.1002/hyp.1160.

Simberloff DS, Martin JL. 1991. Nestedness of insular avifaunas: simple summary statistics masking complex species patterns. Ornis Fenn. 68:178-192.

Simón M, editor. 2005. Almería. Factores formadores y suelos. [Internet]. Almería: Editorial Universidad de Almería. 80 p. [cited 2019 jan 9]. Available from: http://www.secs.com.es/wp-content/uploads/2016/02/2005-op-1.pdf.

Strahler AN. 1957. Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union 38(6):913-920.

Ulrich W, Almeida-Neto M, Gotelli N. 2009. A consumer's guide to nestedness analysis. Oikos 118:3-17. doi: 10.1111/j.1600-0706.2008.17053.x.

Villalobos-Megía M, editor. 2003. Geology of the Arid Zone of Almería: South East Spain. An Educational Field Guide. ACUSUR. 163 p. [cited 2019 jan 9]. Available from: http://www.juntadeandalucia.es/medioambiente/web/ContenidosOrdenacion/red_informacion_ambiental/PDF/Geodiversidad/Geology_of_the_arid_zone_of_Almeria/Front_page.pdf.

Weber HE, Moravec J, Theurillat JP. 2000. International Code of Phytosociological Nomenclature. J Vege Sci. 11:739-768. doi: 10.2307/3236580.

Zaballos JM. 1997. Un nuevo Geocharis de Almería (Coleoptera, Caraboidea, Trechidae, Anillini). Zoologica Baetica 8:171-180.

Zhang X. 2013. Pedodiversity Studies in China. In: Ibáñez JJ, Bockheim JG, editors. Pedodiversity. Boca Raton, FL: CRC Press. p. 211-228.





With the patronage of
Universia
Avda. de Cantabria, s/n - 28660, Boadilla del Monte
Madrid, España